Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance


Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: OGT interacts with phosphoinositides.
Figure 2: Phosphoinositide signalling mediates OGT translocation.
Figure 3: O -GlcNAc dynamically regulates insulin signalling pathway.
Figure 4: Hepatic overexpression of OGT produces insulin resistance.
Figure 5: OGT overexpression causes phosphoinositide-dependent perturbation of insulin signalling.


  1. 1

    Zimmet, P., Alberti, K. G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001)

    CAS  Article  Google Scholar 

  3. 3

    Lazar, M. A. How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Taylor, S. I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999)

    CAS  Article  Google Scholar 

  5. 5

    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Shepherd, P. R., Withers, D. J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Hawkins, P. T., Anderson, K. E., Davidson, K. & Stephens, L. R. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34, 647–662 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Saltiel, A. R. & Pessin, J. E. Insulin signaling pathways in time and space. Trends Cell Biol. 12, 65–71 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Asante-Appiah, E. & Kennedy, B. P. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am. J. Physiol. Endocrinol. Metab. 284, E663–E670 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Lazar, D. F. & Saltiel, A. R. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Rev. Drug Discov. 5, 333–342 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Zick, Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci. STKE 2005, pe4 (2005)

    PubMed  Google Scholar 

  13. 13

    White, M. F. IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab. 283, E413–E422 (2002)

    CAS  Article  Google Scholar 

  14. 14

    Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984)

    CAS  PubMed  Google Scholar 

  15. 15

    Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the ‘O-GlcNAc code’. Sci. STKE 2005, re13 (2005)

    PubMed  Google Scholar 

  16. 16

    Gao, Y., Wells, L., Comer, F. I., Parker, G. J. & Hart, G. W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Kreppel, L. K., Blomberg, M. A. & Hart, G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997)

    CAS  Article  Google Scholar 

  18. 18

    Toleman, C., Paterson, A. J., Whisenhunt, T. R. & Kudlow, J. E. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J. Biol. Chem. 279, 53665–53673 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Yang, X. et al. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc. Natl Acad. Sci. USA 98, 6611–6616 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Yang, X., Zhang, F. & Kudlow, J. E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Buse, M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290, E1–E8 (2006)

    CAS  Article  Google Scholar 

  24. 24

    Musicki, B., Kramer, M. F., Becker, R. E. & Burnett, A. L. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc. Natl Acad. Sci. USA 102, 11870–11875 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Hanover, J. A. et al. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl Acad. Sci. USA 102, 11266–11271 (2005)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Lehman, D. M. et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-β-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54, 1214–1221 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Majumdar, G. et al. Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1. Diabetes 53, 3184–3192 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Konrad, R. J. & Kudlow, J. E. The role of O-linked protein glycosylation in beta-cell dysfunction. Int. J. Mol. Med. 10, 535–539 (2002)

    CAS  PubMed  Google Scholar 

  29. 29

    McClain, D. A. et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc. Natl Acad. Sci. USA 99, 10695–10699 (2002)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Vosseller, K., Wells, L., Lane, M. D. & Hart, G. W. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes. Proc. Natl Acad. Sci. USA 99, 5313–5318 (2002)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Roos, M. D. et al. Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins. Proc. Assoc. Am. Physicians 110, 422–432 (1998)

    CAS  PubMed  Google Scholar 

  32. 32

    Haltiwanger, R. S., Holt, G. D. & Hart, G. W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990)

    CAS  PubMed  Google Scholar 

  33. 33

    Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Liu, K., Paterson, A. J., Chin, E. & Kudlow, J. E. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc. Natl Acad. Sci. USA 97, 2820–2825 (2000)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Yki-Jarvinen, H., Virkamaki, A., Daniels, M. C., McClain, D. & Gottschalk, W. K. Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism 47, 449–455 (1998)

    CAS  Article  Google Scholar 

  36. 36

    Wells, L., Vosseller, K. & Hart, G. W. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell. Mol. Life Sci. 60, 222–228 (2003)

    CAS  Article  Google Scholar 

  37. 37

    Zachara, N. E. & Hart, G. W. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673, 13–28 (2004)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Whisenhunt, T. R. et al. Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology 16, 551–563 (2006)

    CAS  Article  Google Scholar 

  39. 39

    Chen, M. X. & Cohen, P. T. Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett. 400, 136–140 (1997)

    CAS  Article  Google Scholar 

  40. 40

    Arias, E. B., Kim, J. & Cartee, G. D. Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53, 921–930 (2004)

    CAS  Article  Google Scholar 

  41. 41

    D’Alessandris, C. et al. Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. FASEB J. 18, 959–961 (2004)

    Article  Google Scholar 

  42. 42

    Park, S. Y., Ryu, J. & Lee, W. O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp. Mol. Med. 37, 220–229 (2005)

    CAS  Article  Google Scholar 

  43. 43

    Ongusaha, P. P. et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 22, 1289–1301 (2003)

    CAS  Article  Google Scholar 

  44. 44

    Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9, 95–108 (2002)

    CAS  Article  Google Scholar 

  45. 45

    Furukawa, N. et al. Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab. 2, 119–129 (2005)

    CAS  Article  Google Scholar 

  46. 46

    Joost, H. G. & Schurmann, A. Subcellular fractionation of adipocytes and 3T3–L1 cells. Methods Mol. Biol. 155, 77–82 (2001)

    CAS  PubMed  Google Scholar 

  47. 47

    Su, K., Yang, X., Roos, M. D., Paterson, A. J. & Kudlow, J. E. Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1. Biochem. J. 348, 281–289 (2000)

    CAS  Article  Google Scholar 

  48. 48

    Miles, P. D., Barak, Y., He, W., Evans, R. M. & Olefsky, J. M. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J. Clin. Invest. 105, 287–292 (2000)

    CAS  Article  Google Scholar 

  49. 49

    Suzuki, Y. et al. Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol. Cell. Biol. 21, 2683–2694 (2001)

    CAS  Article  Google Scholar 

  50. 50

    Norris, A. W. et al. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 112, 608–618 (2003)

    CAS  Article  Google Scholar 

Download references


We thank T. Hunter, B. Burgering, J. Yuan and O. Gozani for providing reagents; R. Shaw for advice; R. Shaw, S. Dove and H. Cho for critical reading of the manuscript; Z. Wu for help with statistical analysis; M. Nelson and K. Kawamura for technical assistance; and L. Ong and S. Ganley for administrative assistance. X.Y. is the recipient of a Ruth L. Kirschstein National Research Service Award Individual Fellowship. R.M.E. is an Investigator of the Howard Hughes Medical Institute at the Salk Institute and March of Dimes Chair in Molecular and Developmental Biology. R.M.E. is supported by grants from the Howard Hughes Medical Institute and the NIH (National Institute of Diabetes and Digestive and Kidney Diseases, and Nuclear Receptor Signaling Atlas). J.M.O. is supported by NIH grants and a University of California Discovery BioStar grant with matching funds from Pfizer Incorporated. S.J.F. is supported by grants from the Burroughs Wellcome Fund, the V Foundation, and the NIH.

Author Contributions X.Y. conceived the project, designed and performed most of the experiments. P.P.O. and S.J.F. participated in protein–lipid binding and cell imaging experiments. P.D.M. performed hyperinsulinaemic–euglycaemic glucose clamp studies. J.C.H. assisted in biochemical and animal experiments. F.Z. performed OGT activity assays. W.V.S. performed bioinformatic analyses. J.M.O., R.H.M., J.E.K. and S.J.F. provided intellectual input and technical expertise. R.M.E. supervised the project. X.Y. and R.M.E. wrote the manuscript.

Author information



Corresponding author

Correspondence to Ronald M. Evans.

Ethics declarations

Competing interests

J.M.O. is a consultant for Pfizer Incorporated.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S21 with Legends, Legends to Supplementary Movies 1-6, and Supplementary Methods. (PDF 678 kb)

Supplementary Movie 1

This file contains Supplementary Movie 1 (MOV 472 kb)

Supplementary Movie 2

This file contains Supplementary Movie 2 (MOV 1419 kb)

Supplementary Movie 3

This file contains Supplementary Movie 3 (MOV 1428 kb)

Supplementary Movie 4

This file contains Supplementary Movie 4 (MOV 529 kb)

Supplementary Movie 5

This file contains Supplementary Movie 5 (MOV 939 kb)

Supplementary Movie 6

This file contains Supplementary Movie 6 (MOV 656 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, X., Ongusaha, P., Miles, P. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing