Coaxial silicon nanowires as solar cells and nanoelectronic power sources


Solar cells are attractive candidates for clean and renewable power1,2; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics1,2,3,4,5,6,7,8,9. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend4 and dye-sensitized solar cells5,6, to demonstrate carrier multiplication7, and to enable low-temperature processing of photovoltaic devices3,4,5,6. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials8,9. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities1. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis10, and might find general usage as elements for powering ultralow-power electronics11 and diverse nanosystems12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematics and electron microscopy images of the p-i-n coaxial silicon nanowire.
Figure 2: Device fabrication and diode characterization.
Figure 3: Characterization of the p-i-n silicon nanowire photovoltaic device.
Figure 4: Self-powered nanosystems.


  1. 1

    Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Lewis, N. S. & Crabtree, G. Basic Research Needs for Solar Energy Utilization. (Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, US Department of Energy, Washington DC, 2005); <> (18–21 April, 2005)

    Google Scholar 

  3. 3

    Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Baxter, J. B. & Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005)

    ADS  Article  Google Scholar 

  7. 7

    Luque, A., Marti, A. & Nozik, A. J. Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005)

    ADS  Article  Google Scholar 

  9. 9

    Zhang, Y., Wang, L. W. & Mascarenhas, A. Quantum coaxial cables. Nano Lett. 7, 1264–1269 (2007)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gust, D., Moore, T. A. & Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40–48 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotechnol. 1, 25–35 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Avouris, P. & Chen, J. Nanotube electronics and optoelectronics. Mater. Today 9, 46–54 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)

    ADS  CAS  Google Scholar 

  15. 15

    Zheng, G. F., Lu, W., Jin, S. & Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16, 1890–1893 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Karpov, V. G., Cooray, M. L. C. & Shvydka, D. Physics of ultrathin photovoltaics. Appl. Phys. Lett. 89, 163518 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Shah, A. V. et al. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12, 113–142 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2003)

    Google Scholar 

  20. 20

    Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Würfel, P. Physics of Solar Cells, From Principles to New Concepts (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  22. 22

    Green, M. A. General temperature dependence of solar cell performance and implications for device modeling. Prog. Photovolt. Res. Appl. 11, 333–340 (2003)

    CAS  Article  Google Scholar 

  23. 23

    Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. Res. Appl. 8, 473–487 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Green, M. A., Emery, K., King, D. L., Hishikawa, Y. & Warta, W. Solar cell efficiency tables (version 29). Photovolt. Res. Appl. 15, 35–40 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Patolsky, F., Zheng, G. F. & Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols 1 1711–1724 doi: 10.1038/nprot.2006.227 (2006)

    CAS  Article  PubMed  Google Scholar 

Download references


We thank D. W. Pang, D. C. Bell, H. G. Park, H. S. Choe, H. Yan and P. Xie for help with experiment and data analysis. C.M.L. acknowledges support from the MITRE Corporation and the Air Force Office of Scientific Research, and T.J.K. acknowledges an NSF graduate fellowship.

Author Contributions C.M.L., B.T., X.Z. and T.J.K. designed the experiments. B.T., X.Z., T.J.K., Y.F., N.Y. and G.Y. performed experiments and analyses. C.M.L., B.T., X.Z. and T.J.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information



Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

This file contains Supplementary Figure S1, which shows periodically-etched p-i-n coaxial silicon nanowires and corresponding logic gates; and Supplementary Figure S2, which shows light/dark current-voltage curves for a p-i-n coaxial silicon nanowire before and after patterning an optical mask on the nanowire. (PDF 410 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tian, B., Zheng, X., Kempa, T. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing