Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Beyond the standard model with the LHC


Whether or not the Large Hadron Collider reveals the long-awaited Higgs particle, it is likely to lead to discoveries that add to, or challenge, the standard model of particle physics. Data produced will be pored over for any evidence of supersymmetric partners for the existing denizens of the particle 'zoo' and for the curled-up extra dimensions demanded by string theory. There might also be clues as to why matter dominates over antimatter in the Universe, and as to the nature of the Universe's dark matter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Picturing the Higgs field.
Figure 2: The Higgs boson at the LHC.
Figure 3: Physics beyond the TeV scale.
Figure 4: Examples of supersymmetric partners.


  1. Glashow, S. Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).

    Article  Google Scholar 

  2. Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).

    Article  ADS  Google Scholar 

  3. Salam, A. in Elementary Particle Physics: Relativistic Groups and Analyticity (Nobel Symposium No. 8) (ed. Svartholm, N.) 367 (Almqvist and Wiksills, Stockholm, 1968).

    Google Scholar 

  4. Ellis, J. Physics at LHC. Acta Phys. Polon. B38, 1071–1092; preprint at <> (2007).

    ADS  Google Scholar 

  5. LEP Electroweak Working Group. LEP Electroweak Working Group <> (2007).

  6. Tevatron Electroweak Working Group. Tevatron Electroweak Working Group W/Z Subgroup <> (2007).

  7. Tevatron Electroweak Working Group. A combination of CDF and D0 results on the mass of the top quark. Preprint at <> (2007).

  8. 't Hooft, G. Renormalizable Lagrangians for massive Yang–Mills fields. Nucl. Phys. B 35, 167–188 (1971).

    Article  ADS  Google Scholar 

  9. 't Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  12. Barate, R. et al. (ALEPH Collaboration) Observation of an excess in the search for the standard model Higgs boson at ALEPH. Phys. Lett. B 495, 1–17 (2000).

    Article  ADS  CAS  Google Scholar 

  13. LEP Higgs Working Group. LEP Higgs Working Group <> (2007).

  14. Cavalli, D. et al. The Higgs working group: summary report. Proc. Workshop on Physics at TeV Colliders (Les Houches, 2001).

    Google Scholar 

  15. ATLAS Collaboration. Detector and Physics Performance Technical Design Report. <> (2007).

  16. CMS Collaboration. CMS Physics: Technical Design Report (ed. De Roeck, A.) CERN-LHCC-2006-021 (2006).

  17. Ellis, J. Summary of the International Conference on High-Energy Physics, Beijing, China, August 2004. Int. J. Mod. Phys. A20, 5297 (2005).

    Article  ADS  Google Scholar 

  18. Farhi, E. & Susskind, L. Technicolor. Phys. Reports 74, 277–321 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Csaki, C., Grojean, C. Pilo, L. & Terning, J. Towards a realistic model of Higgsless electroweak symmetry breaking. Phys. Rev. Lett. 92, 101802 (2004).

    Article  ADS  Google Scholar 

  20. t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. Under the spell of the gauge principle. (eds 't Hooft, G. et al.) 352–374 (World Scientific, Singapore, 1994).

    Chapter  Google Scholar 

  21. Wess, J. & Zumino, B. A Lagrangian model invariant under supergauge transformations. Phys. Lett. B 49, 52–54 (1974).

    Article  ADS  Google Scholar 

  22. Ferrara, S., Iliopoulos, J. & Zumino, B. Supergauge invariance and the Gell–Mann–Low eigenvalue. Nucl. Phys. B 77, 413–419 (1974).

    Article  ADS  Google Scholar 

  23. Witten, E. Mass hierarchies in supersymmetric theories. Phys. Lett. B 105, 267–271 (1981).

    Article  ADS  Google Scholar 

  24. Ellis, J., Kelley, S. & Nanopoulos, D. Phys. Lett. B 249, 441–448 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Ellis, J., Ridolfi, G. & Zwirner, F. Higgs boson properties in the standard model and its supersymmetric extensions. Preprint at <> (2007).

  26. Fayet, P. in Unification of the Fundamental Particle Interactions (eds Ferrara, S., Ellis, J. & van Nieuwenhuizen, P.) 587 (Plenum, New York, 1980).

    Book  Google Scholar 

  27. Ellis, J., Hagelin, J., Nanopoulos, D., Olive, K. & Srednicki, M. Supersymmetric relics from the Big Bang. Nucl. Phys. B 238, 453–476 (1984).

    Article  ADS  Google Scholar 

  28. Battaglia, M. et al. Updated post-WMAP benchmarks for supersymmetry. Eur. Phys. J. C33, 273–296 (2004).

    Article  ADS  Google Scholar 

  29. Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Green, M., Schwarz, J. & Witten, E. Superstring Theory (Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  31. Randall, S. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Harris, C. M. et al. Exploring higher dimensional black holes at the Large Hadron Collider. JHEP 0505, 053 (2005).

    Article  ADS  Google Scholar 

  34. Cembranos, J., Feng, J. Rajaraman, A. & Takayama, F. Exotic collider signals from the complete phase diagram of minimal universal extra dimensions. Phys. Rev. D 75, 036004 (2007).

    Article  ADS  Google Scholar 

  35. Athanasiou, C., Lester, C. G., Smillie, J. M. & Webber, B. R. Distinguishing spins in decay chains at the Large Hadron Collider. JHEP 0608, 055 (2006).

    Article  ADS  Google Scholar 

  36. Servant, G. & Tait, T. M. P. Is the lightest Kaluza–Klein particle a viable dark matter candidate? Nucl. Phys. B 650, 391–419 (2003).

    Article  ADS  Google Scholar 

  37. Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).

    CAS  Google Scholar 

  38. Cline, J., Joyce, M. & Kainulainen, K. Supersymmetric electroweak baryogenesis. JHEP 0007, 018 (2000).

    Article  ADS  Google Scholar 

  39. LHCb Collaboration. The Large Hadron Collider Beauty Experiment for Precise Measurements of CP Violation and Rare Decays. <> (2007).

  40. Blaising, J.-J. et al. Potential LHC Contributions to Europe's Future Strategy at the High-Energy Frontier. <> (2006).

  41. FP420 Research and Development Project. FP420 R&D Project <> (2007).

  42. Feng, J. L. & Smith, B. T. Slepton trapping at the CERN Large Hadron Collider and the International Linear Collider. Phys. Rev. D 71, 015004 (2005).

    Article  ADS  Google Scholar 

  43. Blondel, A. et al. Physics opportunities with future proton accelerators at CERN. Preprint at <> (2006).

  44. Strategy Group for European Particle Physics. CERN Council Strategy Group Home Page <> (2007).

  45. Christenson, J. H., Cronin, J. W., Fitch, V. L. & Turley, R. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett. 13, 138–140 (1964).

    Article  ADS  Google Scholar 

  46. Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at

Correspondence should be addressed to the author (

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellis, J. Beyond the standard model with the LHC. Nature 448, 297–301 (2007).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing