Abstract
Whether or not the Large Hadron Collider reveals the long-awaited Higgs particle, it is likely to lead to discoveries that add to, or challenge, the standard model of particle physics. Data produced will be pored over for any evidence of supersymmetric partners for the existing denizens of the particle 'zoo' and for the curled-up extra dimensions demanded by string theory. There might also be clues as to why matter dominates over antimatter in the Universe, and as to the nature of the Universe's dark matter.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Glashow, S. Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).
Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).
Salam, A. in Elementary Particle Physics: Relativistic Groups and Analyticity (Nobel Symposium No. 8) (ed. Svartholm, N.) 367 (Almqvist and Wiksills, Stockholm, 1968).
Ellis, J. Physics at LHC. Acta Phys. Polon. B38, 1071–1092; preprint at <http://arxiv.org/abs/hep-ph/0611237> (2007).
LEP Electroweak Working Group. LEP Electroweak Working Group <http://lepewwg.web.cern.ch/LEPEWWG/> (2007).
Tevatron Electroweak Working Group. Tevatron Electroweak Working Group W/Z Subgroup <http://tevewwg.fnal.gov/wz/> (2007).
Tevatron Electroweak Working Group. A combination of CDF and D0 results on the mass of the top quark. Preprint at <http://arxiv.org/abs/hep-ex/0703034> (2007).
't Hooft, G. Renormalizable Lagrangians for massive Yang–Mills fields. Nucl. Phys. B 35, 167–188 (1971).
't Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972).
Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).
Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964).
Barate, R. et al. (ALEPH Collaboration) Observation of an excess in the search for the standard model Higgs boson at ALEPH. Phys. Lett. B 495, 1–17 (2000).
LEP Higgs Working Group. LEP Higgs Working Group <http://lephiggs.web.cern.ch/LEPHIGGS/www/Welcome.html> (2007).
Cavalli, D. et al. The Higgs working group: summary report. Proc. Workshop on Physics at TeV Colliders (Les Houches, 2001).
ATLAS Collaboration. Detector and Physics Performance Technical Design Report. <http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html> (2007).
CMS Collaboration. CMS Physics: Technical Design Report (ed. De Roeck, A.) CERN-LHCC-2006-021 (2006).
Ellis, J. Summary of the International Conference on High-Energy Physics, Beijing, China, August 2004. Int. J. Mod. Phys. A20, 5297 (2005).
Farhi, E. & Susskind, L. Technicolor. Phys. Reports 74, 277–321 (1981).
Csaki, C., Grojean, C. Pilo, L. & Terning, J. Towards a realistic model of Higgsless electroweak symmetry breaking. Phys. Rev. Lett. 92, 101802 (2004).
t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. Under the spell of the gauge principle. (eds 't Hooft, G. et al.) 352–374 (World Scientific, Singapore, 1994).
Wess, J. & Zumino, B. A Lagrangian model invariant under supergauge transformations. Phys. Lett. B 49, 52–54 (1974).
Ferrara, S., Iliopoulos, J. & Zumino, B. Supergauge invariance and the Gell–Mann–Low eigenvalue. Nucl. Phys. B 77, 413–419 (1974).
Witten, E. Mass hierarchies in supersymmetric theories. Phys. Lett. B 105, 267–271 (1981).
Ellis, J., Kelley, S. & Nanopoulos, D. Phys. Lett. B 249, 441–448 (1990).
Ellis, J., Ridolfi, G. & Zwirner, F. Higgs boson properties in the standard model and its supersymmetric extensions. Preprint at <http://arxiv.org/pdf/hep-ph/0702114> (2007).
Fayet, P. in Unification of the Fundamental Particle Interactions (eds Ferrara, S., Ellis, J. & van Nieuwenhuizen, P.) 587 (Plenum, New York, 1980).
Ellis, J., Hagelin, J., Nanopoulos, D., Olive, K. & Srednicki, M. Supersymmetric relics from the Big Bang. Nucl. Phys. B 238, 453–476 (1984).
Battaglia, M. et al. Updated post-WMAP benchmarks for supersymmetry. Eur. Phys. J. C33, 273–296 (2004).
Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990).
Green, M., Schwarz, J. & Witten, E. Superstring Theory (Cambridge Univ. Press, Cambridge, 1987).
Randall, S. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).
Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).
Harris, C. M. et al. Exploring higher dimensional black holes at the Large Hadron Collider. JHEP 0505, 053 (2005).
Cembranos, J., Feng, J. Rajaraman, A. & Takayama, F. Exotic collider signals from the complete phase diagram of minimal universal extra dimensions. Phys. Rev. D 75, 036004 (2007).
Athanasiou, C., Lester, C. G., Smillie, J. M. & Webber, B. R. Distinguishing spins in decay chains at the Large Hadron Collider. JHEP 0608, 055 (2006).
Servant, G. & Tait, T. M. P. Is the lightest Kaluza–Klein particle a viable dark matter candidate? Nucl. Phys. B 650, 391–419 (2003).
Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).
Cline, J., Joyce, M. & Kainulainen, K. Supersymmetric electroweak baryogenesis. JHEP 0007, 018 (2000).
LHCb Collaboration. The Large Hadron Collider Beauty Experiment for Precise Measurements of CP Violation and Rare Decays. <http://lhcb.web.cern.ch/lhcb/> (2007).
Blaising, J.-J. et al. Potential LHC Contributions to Europe's Future Strategy at the High-Energy Frontier. <http://council-strategygroup.web.cern.ch/council-strategygroup/BB2/contributions/Blaising2.pdf> (2006).
FP420 Research and Development Project. FP420 R&D Project <http://www.fp420.com/> (2007).
Feng, J. L. & Smith, B. T. Slepton trapping at the CERN Large Hadron Collider and the International Linear Collider. Phys. Rev. D 71, 015004 (2005).
Blondel, A. et al. Physics opportunities with future proton accelerators at CERN. Preprint at <http://arxiv.org/pdf/hep-ph/0609102> (2006).
Strategy Group for European Particle Physics. CERN Council Strategy Group Home Page <http://council-strategygroup.web.cern.ch/council-strategygroup/> (2007).
Christenson, J. H., Cronin, J. W., Fitch, V. L. & Turley, R. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett. 13, 138–140 (1964).
Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.
Correspondence should be addressed to the author (john.ellis@cern.ch).
Rights and permissions
About this article
Cite this article
Ellis, J. Beyond the standard model with the LHC. Nature 448, 297–301 (2007). https://doi.org/10.1038/nature06079
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06079
This article is cited by
-
Flavour-changing neutral currents making and breaking the standard model
Nature (2017)
-
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Journal of High Energy Physics (2011)
-
Gravity's weight on unification
Nature (2010)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.