Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Positive darwinian selection at the imprinted MEDEA locus in plants

A Corrigendum to this article was published on 15 November 2007

This article has been updated

Abstract

In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele’s activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring1,2. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection3. Here we show that the imprinted plant gene MEDEA (MEA)4,5, which is essential for seed development, originated during a whole-genome duplication 35 to 85 million years ago. After duplication, MEA underwent positive darwinian selection consistent with neo-functionalization and the parental conflict theory. MEA continues to evolve rapidly in the out-crossing species Arabidopsis lyrata but not in the self-fertilizing species Arabidopsis thaliana, where parental conflicts are reduced. The paralogue of MEA, SWINGER (SWN; also called EZA1)6, is not imprinted and evolved under strong purifying selection because it probably retained the ancestral function of the common precursor gene. The evolution of MEA suggests a late origin of genomic imprinting within the Brassicaceae, whereas imprinting is thought to have originated early within the mammalian lineage7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: MEA and SWN are paralogues.
Figure 2: Spatio-temporal expression patterns of MEA, SWN and CLF in the embryo sac and early seed assayed by in situ hybridization.

Change history

References

  1. Haig, D. & Westoby, M. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134, 147–155 (1989)

    Article  Google Scholar 

  2. Smith, F. M., Garfield, A. S. & Ward, A. Regulation of growth and metabolism by imprinted genes. Cytogenet. Genome Res. 113, 279–291 (2006)

    CAS  Article  Google Scholar 

  3. McVean, G. T. & Hurst, L. D. Molecular evolution of imprinted genes: no evidence for antagonistic coevolution. Proc. R. Soc. Lond. B 264, 739–746 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Grossniklaus, U., Vielle-Calzada, J. P., Hoeppner, M. A. & Gagliano, W. B. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280, 446–450 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Vielle-Calzada, J. P. et al. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13, 2971–2982 (1999)

    CAS  Article  Google Scholar 

  6. Chanvivattana, Y. et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276 (2004)

    CAS  Article  Google Scholar 

  7. Walter, J. & Paulsen, M. The potential role of gene duplications in the evolution of imprinting mechanisms. Hum. Mol. Genet. 12 (review issue 2). R215–R220 (2003)

    CAS  Article  Google Scholar 

  8. Kiyosue, T. et al. Control of fertilization-independent endosperm development by the MEDEA Polycomb gene in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4186–4191 (1999)

    ADS  CAS  Article  Google Scholar 

  9. Goodrich, J. et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44–51 (1997)

    ADS  CAS  Article  Google Scholar 

  10. Baumbusch, L. O. et al. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res. 29, 4319–4333 (2001)

    CAS  Article  Google Scholar 

  11. Blanc, G., Hokamp, K. & Wolfe, K. H. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144 (2003)

    CAS  Article  Google Scholar 

  12. Simillion, C., Vandepoele, K., Van Montagu, M. C., Zabeau, M. & Van de Peer, Y. The hidden duplication past of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 99, 13627–13632 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Springer, N. M. et al. Sequence relationships, conserved domains, and expression patterns for maize homologs of the Polycomb group genes E(z), esc, and E(Pc). Plant Physiol. 128, 1332–1345 (2002)

    CAS  Article  Google Scholar 

  15. Springer, N. M. et al. Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 132, 907–925 (2003)

    CAS  Article  Google Scholar 

  16. Mayama, T., Ohtsubo, E. & Tsuchimoto, S. Isolation and expression analysis of petunia CURLY LEAF-like genes. Plant Cell Physiol. 44, 811–819 (2003)

    CAS  Article  Google Scholar 

  17. Thakur, J. K. et al. A Polycomb group gene of rice (Oryza sativa L. subspecies indica), OsiEZ1, codes for a nuclear-localized protein expressed preferentially in young seedlings and during reproductive development. Gene 314, 1–13 (2003)

    CAS  Article  Google Scholar 

  18. Ohad, N. et al. A mutation that allows endosperm development without fertilization. Proc. Natl Acad. Sci. USA 93, 5319–5324 (1996)

    ADS  CAS  Article  Google Scholar 

  19. Chaudhury, A. M. et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 94, 4223–4228 (1997)

    ADS  CAS  Article  Google Scholar 

  20. Guitton, A. E. et al. Identification of new members of FERTILISATION INDEPENDENT SEED Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971–2981 (2004)

    CAS  Article  Google Scholar 

  21. Köhler, C. et al. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804–4814 (2003)

    Article  Google Scholar 

  22. Wang, D., Tyson, M. D., Jackson, S. S. & Yadegari, R. Partially redundant functions of two SET-domain Polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 13244–13249 (2006)

    ADS  CAS  Article  Google Scholar 

  23. Yang, Z. & Bielawski, J. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000)

    CAS  Article  Google Scholar 

  24. Bielawski, J. P. & Yang, Z. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J. Mol. Evol. 59, 121–132 (2004)

    CAS  Article  Google Scholar 

  25. Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weishaar, B. & Mitchell-Olds, T. A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169, 1601–1615 (2005)

    CAS  Article  Google Scholar 

  26. Baroux, C., Gagliardini, V., Page, D. R. & Grossniklaus, U. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev. 20, 1081–1086 (2006)

    CAS  Article  Google Scholar 

  27. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003)

    ADS  Article  Google Scholar 

  28. Adachi, J. H. M. MOLPHY Version 2.3: Programs for molecular phylogenetics based on Maximum Likelihood. Comp. Sci. Monogr. 28, 1–150 (1996)

    Google Scholar 

  29. Yang, Z. & Nielsen, R. Synonymous and non-synonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 46, 409–418 (1998)

    ADS  CAS  Article  Google Scholar 

  30. Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DNAsp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003)

    CAS  Article  Google Scholar 

  31. Coen, E. S. et al. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322 (1990)

    CAS  Article  Google Scholar 

  32. Jackson, D., Culianez-Macia, F., Prescott, A. G., Roberts, K. & Martin, C. Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3, 115–125 (1991)

    CAS  Article  Google Scholar 

  33. Huang, S., An, Y. Q., McDowell, J. M., McKinney, E. C. & Meagher, R. B. The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol. Biol. 33, 125–139 (1997)

    CAS  Article  Google Scholar 

  34. Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000)

    CAS  Article  Google Scholar 

  35. Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002)

    CAS  Article  Google Scholar 

  36. Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weisshaar, B. & Mitchell-Olds, T. A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169, 1601–1615 (2005)

    CAS  Article  Google Scholar 

  37. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987)

    Book  Google Scholar 

  38. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fay, J. C. & Wu, C.-I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McDonald, J. & Kreitman, M. Adaptive evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991)

    ADS  CAS  Article  Google Scholar 

  41. Hudson, R. R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Gheyselinck and P. Kopf for the technical support; C. O’Mahony for assistance with artwork and figures; M. O’ Connell for comments on the manuscript; and T. Mitchell-Olds, M. Clauss, R. Oyama, J. Goodrich and NASC for seeds. This work was supported by the University of Zürich, a UNESCO fellowship (to J.-M.E.-R.), the EU Network of Excellence ‘EPIGENOME‘, and grants of the Swiss National Science Foundation (to U.G.), the Deutsche Forschungsgemeinschaft and the Max Planck Society (to K.J.S.), and the Science Foundation Ireland (to C.S. and K.H.W.).

Sequences generated in this study are available from GenBank (accession numbers DQ975464–DQ975465).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Spillane or Ueli Grossniklaus.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S9 and Supplementary Figures S1-S3 with Legends. (PDF 784 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spillane, C., Schmid, K., Laoueillé-Duprat, S. et al. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448, 349–352 (2007). https://doi.org/10.1038/nature05984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05984

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing