Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner

Abstract

RNA polymerase II (RNAP II) is responsible for transcribing all messenger RNAs in eukaryotic cells during a highly regulated process that is conserved from yeast to human1, and that serves as a central control point for cellular function. Here we investigate the transcription dynamics of single RNAP II molecules from Saccharomyces cerevisiae against force and in the presence and absence of TFIIS, a transcription elongation factor known to increase transcription through nucleosomal barriers2. Using a single-molecule dual-trap optical-tweezers assay combined with a novel method to enrich for active complexes, we found that the response of RNAP II to a hindering force is entirely determined by enzyme backtracking3,4,5,6. Surprisingly, RNAP II molecules ceased to transcribe and were unable to recover from backtracks at a force of 7.5 ± 2 pN, only one-third of the force determined for Escherichia coli RNAP7,8. We show that backtrack pause durations follow a t-3/2 power law, implying that during backtracking RNAP II diffuses in discrete base-pair steps, and indicating that backtracks may account for most of RNAP II pauses. Significantly, addition of TFIIS rescued backtracked enzymes and allowed transcription to proceed up to a force of 16.9 ± 3.4 pN. Taken together, these results describe a regulatory mechanism of transcription elongation in eukaryotes by which transcription factors modify the mechanical performance of RNAP II, allowing it to operate against higher loads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule transcription.
Figure 2: Force–velocity analysis.
Figure 3: Backtrack entry and exit.

Similar content being viewed by others

References

  1. Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996)

    Article  CAS  Google Scholar 

  2. Kireeva, M. L. et al. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18, 97–108 (2005)

    Article  CAS  Google Scholar 

  3. Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl Acad. Sci. USA 94, 1755–1760 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Komissarova, N. & Kashlev, M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338 (1997)

    Article  CAS  Google Scholar 

  5. Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA–DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33–41 (1997)

    Article  CAS  Google Scholar 

  6. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nature Struct. Mol. Biol. 11, 394–403 (2004)

    Article  CAS  Google Scholar 

  10. Komissarova, N., Kireeva, M. L., Becker, J., Sidorenkov, I. & Kashlev, M. Engineering of elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol. 371, 233–251 (2003)

    Article  CAS  Google Scholar 

  11. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Moffitt, J., Chemla, Y., Izhaky, D. & Bustamante, C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J. & Block, S. M. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115, 437–447 (2003)

    Article  CAS  Google Scholar 

  15. Izban, M. G. & Luse, D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267, 13647–13655 (1992)

    CAS  PubMed  Google Scholar 

  16. Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J. L. & Bustamante, C. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682–11687 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Kulish, D. & Struhl, K. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mol. Cell. Biol. 21, 4162–4168 (2001)

    Article  CAS  Google Scholar 

  19. Li, P. T. X., Collin, D., Smith, S. B., Bustamante, C. & Tinoco, I. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophys. J. 90, 250–260 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Fish, R. N. & Kane, C. M. Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 1577, 287–307 (2002)

    Article  CAS  Google Scholar 

  21. Borukhov, S., Lee, J. & Laptenko, O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol. Microbiol. 55, 1315–1324 (2005)

    Article  CAS  Google Scholar 

  22. Jeon, C. & Agarwal, K. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl Acad. Sci. USA 93, 13677–13682 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Awrey, D. E. et al. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J. Biol. Chem. 273, 22595–22605 (1998)

    Article  CAS  Google Scholar 

  24. Weilbaecher, R. G., Awrey, D. E., Edwards, A. M. & Kane, C. M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 278, 24189–24199 (2003)

    Article  CAS  Google Scholar 

  25. Reines, D. & Mote, J. Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Proc. Natl Acad. Sci. USA 90, 1917–1921 (1993)

    Article  ADS  CAS  Google Scholar 

  26. Palangat, M., Renner, D. B., Price, D. H. & Landick, R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc. Natl Acad. Sci. USA 102, 15036–15041 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Kireeva, M. L., Lubkowska, L., Komissarova, N. & Kashlev, M. Assays and affinity purification of biotinylated and nonbiotinylated forms of double-tagged core RNA polymerase II from Saccharomyces cerevisiae. Methods Enzymol. 370, 138–155 (2003)

    Article  CAS  Google Scholar 

  28. Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134–162 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. R. Chemla, W. Cheng, M. Cruse, S. Dumont, N. R. Forde, B. Ibarra, D. Izhaky, C. Kane, S. Kostek, J. Moffit, J. M. R. Parrondo, M. Peris, S. Plyasunov, A. Ruiz and S. B. Smith for experimental assistance and helpful discussions. This research was supported by a DOE grant. E.A.G. was supported by a Jane Coffin Childs Postdoctoral Fellowship. S.W.G. was supported first by an EMBO Long Term Fellowship and subsequently by a Helen Hay Whitney Postdoctoral Fellowship. We dedicate this manuscript to Jason Choy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bustamante.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1- S8, Supplementary Table S1, Supplementary Methods, Supplementary Equations and additional references (PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galburt, E., Grill, S., Wiedmann, A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007). https://doi.org/10.1038/nature05701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05701

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing