Lanthanide contraction and magnetism in the heavy rare earth elements


The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have1. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice2. Such incommensurate ordering is associated with a ‘webbed’ topology3,4 of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface—and hence the magnetic structure—for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice5. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction6, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Normalized paramagnetic spin susceptibilities for gadolinium, obtained from ab initio calculations.
Figure 2: Bloch spectral function of gadolinium on the HLMK plane of the hexagonal Brillouin zone, depicting the topology of the Fermi surface.
Figure 3: Magnetic ordering tendencies of gadolinium (Gd) as a function of c/a ratio and W–S radii.
Figure 4: Experimental magnetic ordering vectors of the heavy rare earth elements versus those predicted from ab initio calculations for gadolinium.


  1. 1

    Gschneidner, K. A. & Eyring, L. (eds) Handbook on the Physics and Chemistry of Rare Earths Vol. 1 (North Holland, Amsterdam, 1978)

    Google Scholar 

  2. 2

    Jensen, J. & Mackintosh, A. K. Rare Earth Magnetism 286–304 (Clarendon, Oxford, 1991)

    Google Scholar 

  3. 3

    Keeton, S. C. & Loucks, T. L. Electronic structure of rare-earth metals. I. Relativistic augmented-plane-wave calculations. Phys. Rev. 168, 672–678 (1968)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Fretwell, H. M. et al. Fermi surface as the driving mechanism for helical antiferromagnetic ordering in Gd-Y alloys. Phys. Rev. Lett. 82, 3867–3870 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cracknell, A. P. & Wong, K. C. The Fermi Surface (Clarendon, Oxford, 1973)

    Google Scholar 

  6. 6

    Taylor, K. N. R. & Darby, M. I. Physics of Rare Earth Solids 60–62 (Chapman and Hall, London, 1972)

    Google Scholar 

  7. 7

    Hubbard, J. Magnetism of iron. II. Phys. Rev. B 20, 4584–4595 (1979)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gyorffy, B. L., Pindor, A. J., Staunton, J., Stocks, G. M. & Winter, H. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F 15, 1337–1386 (1985)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Heinemann, M. & Temmerman, W. M. Magnetic structures of hcp bulk gadolinium. Phys. Rev. B 49, 4348–4351 (1994)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kurz, P., Bihlmayer, G. & Blügel, S. Magnetism and electronic structure of hcp Gd and the Gd(0001) surface. J. Phys. Condens. Matter 14, 6353–6371 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Eriksson, O. et al. Bulk and surface magnetism and interplanar spacings in Gd from first-principles calculations. Phys. Rev. B 52, 4420–4426 (1995)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Harmon, B. N., Antropov, V. P., Liechtenstein, A. I., Solovyev, I. V. & Anisimov, V. I. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1994)

    Article  Google Scholar 

  13. 13

    Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Strange, P., Svane, A., Temmerman, W. M., Szotek, Z. & Winter, H. Understanding the valency of rare earths from first-principles theory. Nature 399, 756–758 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lüders, M. et al. Self-interaction correction in multiple scattering theory. Phys. Rev. B 71, 205109 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Rado, G. T. & Suhl, H. (eds) Magnetism Vol. IIB 337–377 (Academic Press, New York, 1966)

    Google Scholar 

  17. 17

    Staunton, J. B. & Gyorffy, B. L. Onsager cavity fields in itinerant-electron paramagnets. Phys. Rev. Lett. 69, 371–374 (1992)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Turek, I., Kudrnovský, J., Bihlmayer, G. & Blügel, S. Ab initio theory of exchange interactions and the Curie temperature of bulk Gd. J. Phys. Condens. Matter 15, 2771–2782 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Andrianov, A. V. Helical magnetic structures in heavy rare-earth metals as a probable manifestation of the electronic topological transition. J. Magn. Magn. Mater. 140–144, 749–750 (1995)

    ADS  Article  Google Scholar 

  20. 20

    Lifshitz, I. M. Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11, 1130–1135 (1960)

    Google Scholar 

  21. 21

    Blanter, Y. M., Kaganov, M. I., Pantsulaya, A. V. & Varlamov, A. A. The theory of electronic topological transitions. Phys. Rep. 245, 159–257 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Evenson, W. E. & Liu, S. H. Generalized susceptibilities and magnetic ordering of heavy rare earths. Phys. Rev. Lett. 21, 432–434 (1968)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Dugdale, S. B. et al. Direct observation and calipering of the “webbing” Fermi surface of yttrium. Phys. Rev. Lett. 79, 941–944 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Nordström, L. & Mavromaras, A. Magnetic ordering of the heavy rare earths. Europhys. Lett. 49, 775–781 (2000)

    ADS  Article  Google Scholar 

  25. 25

    Andrianov, A. V., Kosarev, D. I. & Beskrovnyi, A. I. Helical magnetic ordering in Tb completely suppressed by uniaxial tension: Evidence of electronic topological transition and support for the nesting hypothesis. Phys. Rev. B 62, 13844–13847 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Milstein, F. & Robinson, L. B. Magnetic transitions in alloys of gadolinium and dysprosium. Phys. Rev. 159, 466–472 (1967)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Andrianov, A. V. & Chistiakov, O. D. Evidence of pressure-induced antiferromagnetism in ferromagnetic Ho0. 4 Gd0. 6 . Phys. Rev. B 55, 14107–14108 (1997)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Blundell, S. Magnetism in Condensed Matter 91–92 (Oxford Univ. Press, Oxford, 2001)

    Google Scholar 

Download references


This work was supported by the EPSRC (UK) and the CCLRC’s Centre for Materials Physics and Chemistry. Computing resources were provided by the CSC at the University of Warwick, as well as the CCLRC’s e-Science facility and the John von Neumann Institute for Computing in Jülich.

Author information



Corresponding authors

Correspondence to I. D. Hughes or J. B. Staunton.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figure S1 with Legend and additional references. The Supplementary Methods section contains further details of the electronic structure techniques used in our investigation. Figure S1 shows the 3D Fermi surface of gadolinium. (PDF 651 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hughes, I., Däne, M., Ernst, A. et al. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature 446, 650–653 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing