Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition

Abstract

Continental aridification and the intensification of the monsoons in Asia are generally attributed to uplift of the Tibetan plateau and to the land–sea redistributions associated with the continental collision of India and Asia1,2,3, whereas some studies suggest that past changes in Asian environments are mainly governed by global climate4,5,6. The most dramatic climate event since the onset of the collision of India and Asia is the Eocene–Oligocene transition, an abrupt cooling step associated with the onset of glaciation in Antarctica 34 million years ago7,8,9. However, the influence of this global event on Asian environments is poorly understood. Here we use magnetostratigraphy and cyclostratigraphy to show that aridification, which is indicated by the disappearance of playa lake deposits in the northeastern Tibetan plateau, occurred precisely at the time of the Eocene–Oligocene transition. Our findings suggest that this global transition is linked to significant aridification and cooling in continental Asia recorded by palaeontological and palaeoenvironmental changes10,11,12, and thus support the idea that global cooling is associated with the Eocene–Oligocene transition13,14,15. We show that, with sufficient age control on the sedimentary records, global climate can be distinguished from tectonism and recognized as a major contributor to continental Asian environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geologic setting.
Figure 2: Stratigraphic correlations.

References

  1. An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Gupta, A. K., Singh, R. K., Joseph, S. & Thomas, E. Indian Ocean high-productivity event (10–8 Ma): Linked to global cooling or to the initiation of the Indian monsoons? Geology 32, 753–756 (2004)

    Article  ADS  Google Scholar 

  5. Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediments: How might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67–89 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Zhang, P., Molnar, P. & Downs, W. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001)

    Article  ADS  Google Scholar 

  7. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  CAS  Google Scholar 

  8. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Zachos, J. C. & Kump, L. R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Glob. Planet. Change 47, 51–66 (2005)

    Article  ADS  Google Scholar 

  10. Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394, 364–367 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Garzione, C., Ikari, M. J. & Basu, A. R. Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate. Geol. Soc. Am. Bull. 117 1156–1166 doi: 10.1130/B25743.1 (2005)

    Article  ADS  Google Scholar 

  12. Graham, S. A. et al. Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim basin. Am. J. Sci. 305, 101–118 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Ivany, L. C., Patterson, W. P. & Kyger, C. L. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Grimes, S. T., Hooker, J. J., Collinson, M. E. & Mattey, D. P. Summer temperatures of late Eocene to early Oligocene freshwaters. Geology 33, 189–192 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Kohn, M. J. et al. Climate stability across the Eocene-Oligocene transition, southern Argentina. Geology 32, 621–624 (2004)

    Article  ADS  Google Scholar 

  16. Talbot, M. R. & Allen, P. A. in Sedimentary Environments: Processes, Facies and Stratigraphy (ed. Reading, H. G.) 83–124 (Blackwell Publishing Inc., Oxford, 1996)

    Google Scholar 

  17. Dai, S. et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. 111 doi: 10.129/2005JB004187 (2006)

  18. Yechieli, Y. & Wood, W. W. Hydrogeologic processes in saline systems: playas, sabkhas and saline lakes. Earth Sci. Rev. 58, 343–365 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Wang, D.-N., Sun, X.-Y. & Zhao, Y.-N. Late Cretaceous to Tertiary palynofloras in Xinjiang and Qinghai, China. Rev. Palaeobot. Palynol. 65, 95–104 (1990)

    Article  Google Scholar 

  20. Ogg, J. G. & Smith, A. G. in A Geologic Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.) 63–86 (Cambridge Univ. Press, Cambridge, UK, 2004)

    Google Scholar 

  21. Prothero, D. R. in Encyclopedia of Geology (eds Selley, R., Cocks, R. & Plimer, I.) 472–478 (Elsevier, London, 2004)

    Google Scholar 

  22. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. doi: 10.1051/0004–6361:20041335 (2004)

  23. Clift, P. D., Layne, G. D. & Blusztajn, J. Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in Asia. Continent-ocean interactions in the East Asian marginal seas. AGU Monogr. 149, 255–282 (2004)

    Google Scholar 

  24. Kutzbach, J. E. & Behling, P. Comparison of simulated changes of climate in Asia for two scenarios: Early Miocene to present, and present to future enhanced greenhouse. Glob. Planet. Change 41, 157–165 (2004)

    Article  ADS  Google Scholar 

  25. Ruddiman, W. F., Kutzbach, J. E. & Prentice, I. C. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 203–235 (Plenum, New York, 1997)

    Book  Google Scholar 

  26. Popov, S. et al. Lithological-paleogeographic maps of Paratethys 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250, 1–42 (2004)

    Google Scholar 

  27. Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Harris, N. B. W. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 4–15 (2006)

    Article  Google Scholar 

  29. Huber, M. et al. Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleoceanography 19 doi: 10.1029/2004PA001014 (2004)

  30. Krijgsman, W. et al. Revised astrochronology for the Ain el Beida section (Atlantic Morocco): No glacio-eustatic control for the onset of the Messinian Salinity Crisis. Stratigraphy 1, 87–101 (2004)

    Google Scholar 

Download references

Acknowledgements

Reviews by C. Garzione and discussions with F. Hilgen and M. Szurlies greatly improved the original manuscript. We thank H. Pälike and P. Wilson for sharing chron age calibrations. Lanzhou University students Dang Y. and Meng Q. provided logistical assistance. This project was funded through a ‘Marie Curie’ Fellowship from the European Union and a ‘Veni’ grant from the Netherlands science foundation (NWO) to G.D.-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Dupont-Nivet.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S3 and Legends, Supplementary Tables S1-S4 and additional references. (PDF 394 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dupont-Nivet, G., Krijgsman, W., Langereis, C. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007). https://doi.org/10.1038/nature05516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05516

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing