Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reorganization of Asian climate in relation to Tibetan Plateau uplift

Abstract

Reorganization of the Asian climate from one dominated by global planetary wind systems to a regional monsoon climate is closely related to the surface uplift of the Tibetan Plateau (TP). However, evaluating this climatic reorganization is limited by difficulty in constraining the complex, multistaged uplift of the TP and contradictory evidence regarding Asian Monsoon onset. In this Review, we summarize proxy and model evidence for Asian Monsoon initiation at different latitudes to identify the main controls on monsoon evolution. Stratigraphy and palaeoclimate proxy records indicate that the Asian climate was reorganized in a two-stage northward expansion process. At ~41 million years ago (Ma), the monsoon advanced northwards from the tropic to the southern subtropical regions (~26° N, approximately present-day Yunnan), probably driven by central TP uplift, global cooling and rapid regression of the proto-Paratethys Sea. At ~26 Ma, the monsoon expanded northwards into temperate regions (~30–36° N, equivalent to the present-day Asian Monsoon boundary), likely driven by TP growth and global warming. Additional proxy records are needed to fill regional gaps, establishing more solid boundary conditions and improving parameter constraints for climate models.

Key points

  • Stratigraphic and proxy records from several key sites along the Asian Monsoon expansion route demonstrate that the Asian climate reorganization occurred in two stages, including northward expansion at ~41 million years ago (Ma) and attainment of a similar to modern pattern at ~26 Ma.

  • Before ~41 Ma, the Asian Monsoon was limited to a tropical monsoon system south of ~20–22° N, largely driven by seasonal fluctuations in the Intertropical Convergence Zone.

  • At ~41 Ma, the Asian Monsoon permanently expanded northwards to the southern subtropical region in East Asia, accompanied by simultaneous aridification in the northern Tibetan Plateau (TP) and Central Asia.

  • The modern-like pattern of the Asian Monsoon was established at ~ 26 Ma, which includes a north-west dry to south-east humid boundary along ~30–36 °N.

  • The two stages of reorganization were probably driven by a combination of south TP and Tanggula Shan uplift, retreat of the proto-Paratethys Sea, Himalaya–central TP uplift and global climate changes, respectively.

  • In turn, regional Asian climate and environmental changes between ~41 and ~26 Ma impacted global surface processes and climate, through increased erosion and silicate weathering of the Himalaya region, organic carbon burial in the south-east humid regions and increased dust emissions from aridification in Central Asia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cenozoic palaeogeographic reconstructions for the Eurasian region.
Fig. 2: The integrated temporal and spatial lithological changes of representative basins.
Fig. 3: Integrated vegetation and clay mineral records in both Asian Monsoon and arid regions.
Fig. 4: Integrated palaeoclimate records for East Asia since 26 Ma.
Fig. 5: Comparisons of Asian climate with tectonic and global climate records.
Fig. 6: The global impacts of Asian climate reorganization in relation to TP surface uplift.

Similar content being viewed by others

References

  1. Wang, B. The Asian Monsoon 1–836 (Springer, 2006).

  2. An, Z. S. et al. in Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-arid Environment Evolution (ed. An, Z.) 1–587 (Springer, 2014).

  3. Guo, Z. T. et al. A major reorganization of Asian climate by the early Miocene .Clim. Past. 4, 153–174 (2008). This work illustrates changes in the spatial patterns of the East Asian Monsoon and concludes that a major change in the environmental pattern of Asia occurred near the Oligocene–Miocene boundary.

    Article  Google Scholar 

  4. Liu, T. S., Zheng, M. P. & Guo, Z. T. Initiation and evolution of the Asian Monsoon system timely coupled with the ice-sheet growth and the tectonic movement in Asia. Quat. Sci. 18, 194–204 (1998).

    Google Scholar 

  5. Shi, Y. F., Tang, M. C. & Ma, Y. Z. Linkage between the second uplifting of the Qinghai–Xizang (Tibetan) Plateau and the initiation of the Asian Monsoon system. Sci. China Ser. D Earth Sci 42, 303–312 (1999).

    Article  Google Scholar 

  6. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    Article  Google Scholar 

  7. Sun, X. J. & Wang, P. X. How old is the Asian Monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222 (2005).

    Article  Google Scholar 

  8. Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian Monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    Article  Google Scholar 

  9. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396 (1993).

    Article  Google Scholar 

  10. Manabe, S. & Terpstra, T. B. Effects of mountains on general circulation of atmosphere as identified by numerical experiments. J. Atmos. Sci. 31, 3–42 (1974).

    Article  Google Scholar 

  11. Ruddiman, W. F. & Kutzbach, J. E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res. Atmos. 94, 18409–18427 (1989).

    Article  Google Scholar 

  12. Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F. & Prell, W. L. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: numerical experiments. J. Geophys. Res. Atmos. 94, 18393–18407 (1989).

    Article  Google Scholar 

  13. Manabe, S. & Broccoli, A. J. Mountains and arid climates of middle latitudes. Science 247, 192–194 (1990).

    Article  Google Scholar 

  14. Prell, W. L. & Kutzbach, J. E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652 (1992).

    Article  Google Scholar 

  15. Wu, G. et al. Thermal controls on the Asian Summer Monsoon. Sci. Rep. 2, 404 (2012).

    Article  Google Scholar 

  16. Zhu, C., Meng, J., Hu, Y., Wang, C. & Zhang, J. East-central Asian climate evolved with the northward migration of the high proto-Tibetan Plateau. Geophys. Res. Lett. 46, 8397–8406 (2019).

    Article  Google Scholar 

  17. Tardif, D. et al. The origin of Asian monsoons: a modelling perspective. Clim. Past. 16, 847–865 (2020). This model suggests that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes.

    Article  Google Scholar 

  18. An, Z. S., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since late Miocene times. Nature 411, 62–66 (2001).

    Article  Google Scholar 

  19. Ruddiman, W. F. & Kutzbach, J. E. Late Cenozoic plateau uplift and climate change. Trans. R. Soc. Edinb. Earth Sci. 81, 301–314 (1990).

    Article  Google Scholar 

  20. Boos, W. R. & Kuang, Z. Dominant control of the South Asian Monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Article  Google Scholar 

  21. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).

    Article  Google Scholar 

  22. Fluteau, F., Ramstein, G. & Besse, J. Simulating the evolution of the Asian and African Monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res. Atmos. 104, 11995–12018 (1999).

    Article  Google Scholar 

  23. Zhang, Z. S., Wang, H. J., Guo, Z. T. & Jiang, D. B. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 317–331 (2007).

    Article  Google Scholar 

  24. Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).

    Article  Google Scholar 

  25. Wang, C. S. et al. Constraints on the early uplift history of the Tibetan Plateau. Proc. Natl Acad. Sci. USA 105, 4987–4992 (2008).

    Article  Google Scholar 

  26. Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A. & Currie, B. S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet. Sci. Lett. 287, 64–76 (2009).

    Article  Google Scholar 

  27. Xu, Q. et al. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet. Sci. Lett. 362, 31–42 (2013).

    Article  Google Scholar 

  28. Ding, L. et al. The Andean-type Gangdese mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014). This work shows that the southern Lhasa terrane reached an elevation of 4,500 m in the Palaeocene–Eocene and that Eocene Tibet was two high mountains sandwiching a low elevation basin.

    Article  Google Scholar 

  29. Ingalls, M. et al. Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: implications for tectonic models of India–Asia collision, Cenozoic climate, and geochemical weathering. Geol. Soc. Am. Bull. 130, 307–330 (2018).

    Article  Google Scholar 

  30. Ingalls, M., Rowley, D. B., Currie, B. S. & Colman, A. S. Reconsidering the uplift history and peneplanation of the northern Lhasa Terrane, Tibet. Am. J. Sci. 320, 479–532 (2020).

    Article  Google Scholar 

  31. Li, J. J. et al. A discussion on the period,amplitude and type of the uplift of the Qinghai–Xizang Plateau. Sci. China Ser. D Earth Sci 22, 1314–1328 (1979).

    Google Scholar 

  32. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  Google Scholar 

  33. Royden, L. H. et al. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788–790 (1997).

    Article  Google Scholar 

  34. Spicer, R. A. et al. Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl. Sci. Rev. 8, nwaa091 (2021).

    Article  Google Scholar 

  35. Tapponnier, P. et al. Geology — oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).

    Article  Google Scholar 

  36. Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00318-4 (2022).

    Article  Google Scholar 

  37. Fang, X. M. et al. Revised chronology of central Tibet uplift (Lunpola Basin). Sci. Adv. 6, eaba7298 (2020).

    Article  Google Scholar 

  38. Quan, C., Liu, Y. S. & Utescher, T. Paleogene evolution of precipitation in northeastern China supporting the Middle Eocene intensification of the East Asian Monsoon. Palaios 26, 743–753 (2011). This work shows there was an East Asian Monsoon climate in the middle Eocene, based on not-robust geological records.

    Article  Google Scholar 

  39. Licht, A. et al. Asian monsoons in a late Eocene greenhouse world. Nature 513, 501 (2014). This work shows that a late Eocene monsoon-like climate developed in response to enhanced greenhouse conditions.

    Article  Google Scholar 

  40. Shukla, A., Mehrotra, R. C., Spicer, R. A., Spicer, T. E. V. & Kumar, M. Cool equatorial terrestrial temperatures and the South Asian monsoon in the early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 187–198 (2014).

    Article  Google Scholar 

  41. Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity — in what ways are they related? Plant Divers. 39, 233–244 (2017). This work shows that Palaeogene monsoons were simply an expression of the seasonal migrations of the ITCZ.

    Article  Google Scholar 

  42. Spicer, R. A. et al. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet. Sci. Lett. 449, 61–68 (2016).

    Article  Google Scholar 

  43. Valdes, P. J. et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”. Science 365, aax8474 (2019).

    Article  Google Scholar 

  44. Xie, Y. L., Wu, F. L. & Fang, X. M. Middle Eocene East Asian Monsoon prevalence over southern China: evidence from palynological records. Glob. Planet. Chang. 175, 13–26 (2019).

    Article  Google Scholar 

  45. Xie, Y. L., Wu, F. L. & Fang, X. M. A major environmental shift by the middle Eocene in southern China: evidence from palynological records. Rev. Palaeobot. Palynol. 278, 104226 (2020).

    Article  Google Scholar 

  46. Xiong, Z. Y. et al. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest. Earth Planet. Sci. Lett. 543, 116312 (2020).

    Article  Google Scholar 

  47. Huber, M. & Goldner, A. Eocene monsoons. J. Asian Earth Sci. 44, 3–23 (2012).

    Article  Google Scholar 

  48. Farnsworth, A. et al. Past East Asian Monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, aax1697 (2019).

    Article  Google Scholar 

  49. Acosta, R. P. & Huber, M. Competing topographic mechanisms for the summer Indo-Asian Monsoon. Geophys. Res. Lett. 47, 085112 (2020).

    Article  Google Scholar 

  50. Ao, H. et al. Late Miocene–Pliocene Asian Monsoon intensification linked to Antarctic ice-sheet growth. Earth Planet. Sci. Lett. 444, 75–87 (2016).

    Article  Google Scholar 

  51. Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007). This work shows that the global Eocene–Oligocene transition is linked to substantial aridification and cooling in continental Asia.

    Article  Google Scholar 

  52. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).

    Article  Google Scholar 

  53. An, Z. S. et al. Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci. 43, 29–77 (2015).

    Article  Google Scholar 

  54. Wang, P. X. et al. The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past 10, 2007–2052 (2014).

    Article  Google Scholar 

  55. Herman, A. B. et al. Eocene–early Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 479, 126–137 (2017).

    Article  Google Scholar 

  56. Ding, L. et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian Monsoon. Geology 45, 215–218 (2017).

    Article  Google Scholar 

  57. Huang, M., Cui, C., Ding, C. & Wan, X. Paleocene palynological assemblage of well SKD1, Jiangling depression, Jianghan Basin, Central China and their geological implications. Acta Micropalaeontol. Sin. 35, 393–402 (2018).

    Google Scholar 

  58. Fang, X. et al. Paleogeography control of Indian Monsoon intensification and expansion at 41 Ma. Sci. Bull. 66, 2320–2328 (2021). This work shows that a similar to modern Indian Monsoon did not exist in the subtropical zone during the early Eocene until it was markedly intensified and expanded from the tropics into the southern subtropics (latitudes ~26° N) of East Asia at 41 Ma.

    Article  Google Scholar 

  59. Wu, Z. H., Hu, D. G., Ye, P. S. & Zhou, C. J. Geological evidences for the Tibetan Plateau uplifted in late Oligocene. Acta Geol. Sin. 81, 577–587 (2007).

    Google Scholar 

  60. Hoorn, C. et al. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344, 16–38 (2012).

    Article  Google Scholar 

  61. Meijer, N. et al. Loess-like dust appearance at 40 Ma in Central China. Paleoceanogr. Paleoclimatol. 36, e2020PA003993 (2021).

    Article  Google Scholar 

  62. Fang, X. et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology 47, 992–996 (2019).

    Article  Google Scholar 

  63. Lu, H. J. & Xiong, S. F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 288, 539–550 (2009).

    Article  Google Scholar 

  64. Wang, W. T. et al. Expansion of the Tibetan Plateau during the Neogene. Nat. Commun. 8, 15887 (2017).

    Article  Google Scholar 

  65. Duan, L. et al. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam Basin: implications for the tectonic deformation on the northeastern Tibetan Plateau. Chin. Sci. Bull. 67, 872–887 (2022).

    Article  Google Scholar 

  66. Fang, X. et al. High-resolution magneto stratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258, 293–306 (2007).

    Article  Google Scholar 

  67. Nie, J. S. et al. Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Sci. Adv. 3, e1600762 (2017).

    Article  Google Scholar 

  68. Zhang, W. L., Appel, E., Fang, X. M., Song, C. H. & Cirpka, O. Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quat. Res. 78, 139–148 (2012).

    Article  Google Scholar 

  69. Zhang, W. L. et al. Magnetostratigraphy of drill-core SG-1b in the western Qaidam Basin (NE Tibetan Plateau) and tectonic implications. Geophys. J. Int. 197, 90–118 (2014).

    Article  Google Scholar 

  70. Su, T. et al. A middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).

    Article  Google Scholar 

  71. Wu, G. X. et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim. Dyn. 39, 1169–1181 (2012).

    Article  Google Scholar 

  72. Liu, X. D., Dong, B. W., Yin, Z. Y., Smith, R. S. & Guo, Q. C. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic. Sci. China Earth Sci. 62, 1053–1075 (2019).

    Article  Google Scholar 

  73. Zhang, J. et al. Elevation of the Gangdese Mountains and their impacts on Asian climate during the Late Cretaceous — a modeling study. Front. Earth Sci. 9, 810931 (2021).

    Article  Google Scholar 

  74. Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  Google Scholar 

  75. Song, B., Zhang, K., Lu, J., Wang, C. & Xu, Y. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can. J. Earth Sci. 50, 183–196 (2013).

    Article  Google Scholar 

  76. Sun, J. & Windley, B. F. Onset of aridification by 34 Ma across the Eocene–Oligocene transition in Central Asia. Geology 43, 1015–1018 (2015).

    Article  Google Scholar 

  77. Fang, X. et al. An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys. J. Int. 201, 78–89 (2015).

    Article  Google Scholar 

  78. Wasiljeff, J., Kaakinen, A., Salminen, J. M. & Zhang, Z. Magnetostratigraphic constraints on the fossiliferous Ulantatal sequence in Inner Mongolia, China: implications for Asian aridification and faunal turnover before the Eocene–Oligocene boundary. Earth Planet. Sci. Lett. 535, 116125 (2020).

    Article  Google Scholar 

  79. Ao, H. et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition. Nat. Commun. 11, 5249 (2020).

    Article  Google Scholar 

  80. Currie, B. S. et al. Multiproxy paleoaltimetry of the late Oligocene–Pliocene Oiyug Basin, southern Tibet. Am. J. Sci. 316, 401–436 (2016).

    Article  Google Scholar 

  81. Liu, Z. F. & Wang, C. S. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil Basin, northern Tibet. Sediment. Geol. 140, 251–270 (2001).

    Article  Google Scholar 

  82. Lu, H. Y. et al. Cenozoic depositional sequence in the Weihe Basin (Central China): a long-term record of Asian monsoon precipitation from the greenhouse to icehouse Earth. Quat. Sci. 38, 1057–1067 (2018).

    Google Scholar 

  83. Wei, M. J., Yi, H. S. & Chen, S. E. An effective method for the sporopollen analysis in the red bed in the hinterland of Tibet Plateau. Quat. Sci. 21, 84–84 (2001).

    Google Scholar 

  84. Miao, Y., Wu, F., Herrmann, M., Yan, X. & Meng, Q. Late early Oligocene East Asian Summer Monsoon in the NE Tibetan Plateau: evidence from a palynological record from the Lanzhou Basin, China. J. Asian Earth Sci. 75, 46–57 (2013).

    Article  Google Scholar 

  85. Tong, G. B. et al. A study of middle and late Eocene palynology assemblages in Jianghan Basin and their environment significance. Acta Geosci. Sin. 22, 73–78 (2001).

    Google Scholar 

  86. Yuan, Q. et al. A late Eocene palynological record from the Nangqian Basin, Tibetan Plateau: implications for stratigraphy and paleoclimate. Palaeoworld 26, 369–379 (2017).

    Article  Google Scholar 

  87. Tardif, D. et al. Orbital variations as a major driver of climate and biome distribution during the greenhouse to icehouse transition. Sci. Adv. 7, eabh2819 (2021).

    Article  Google Scholar 

  88. Wu, M. H., Zhuang, G. S., Hou, M. Q. & Liu, Z. H. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: manifestation of climatic wetting during the Oligocene icehouse. Earth Planet. Sci. Lett. 565, 116935 (2021).

    Article  Google Scholar 

  89. Meijer, N. et al. Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene. Earth Planet. Sci. Lett. 510, 73–84 (2019).

    Article  Google Scholar 

  90. Barbolini, N. et al. Cenozoic evolution of the steppe-desert biome in Central Asia. Sci. Adv. 6, 8227 (2020). This work shows that Central Asian steppe desert has existed since at least Eocene times but has experienced no less than two regime shifts, one at the Eocene–Oligocene transition and one in the middle Miocene.

    Article  Google Scholar 

  91. Ye, C. C. et al. Mineralogical and geochemical discrimination of the occurrence and genesis of palygorskite in Eocene sediments on the northeastern Tibetan Plateau. Geochem. Geophys. Geosyst. 19, 567–581 (2018).

    Article  Google Scholar 

  92. Zhang, C. X. & Guo, Z. T. Clay mineral changes across the Eocene–Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 18–29 (2014).

    Article  Google Scholar 

  93. Zhang, R., Jiang, D. B., Liu, X. D. & Tian, Z. P. Modeling the climate effects of different subregional uplifts within the Himalaya–Tibetan Plateau on Asian Summer Monsoon evolution. Chin. Sci. Bull. 57, 4617–4626 (2012).

    Article  Google Scholar 

  94. Wang, C. S. et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics 621, 1–43 (2015). This work shows that the Tibetan Plateau grew southwards and northwards from a nucleus of high topography (proto-Tibetan Plateau) and is likely to continue expanding along its margin.

    Article  Google Scholar 

  95. Bosboom, R. et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res. 26, 621–640 (2014).

    Article  Google Scholar 

  96. Sun, J. M., Windley, B. F., Zhang, Z. L., Fu, B. H. & Li, S. H. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene. J. Asian Earth Sci. 116, 222–231 (2016).

    Article  Google Scholar 

  97. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005).

    Article  Google Scholar 

  98. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  99. Qiang, X. K. et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Ser. D Earth Sci 54, 136–144 (2011).

    Article  Google Scholar 

  100. Wu, F. L. et al. Magneto- and litho-stratigraphic records of the Oligocene–early Miocene climatic changes from deep drilling in the Linxia Basin, northeast Tibetan Plateau. Glob. Planet. Chang. 158, 36–46 (2017). This work shows that the East Asian Monsoon had already reached the Linxia Basin (35° N) by ~26.5 Ma at the latest.

    Article  Google Scholar 

  101. Xiong, Y. & Li, Q. K. China Soil 1–746 (Science Press, 1987).

  102. Su, B., Sun, J. M. & Jin, C. S. Orbital forcing of climatic changes on the Central Tibetan Plateau reveals late Oligocene to early miocene South Asian monsoon evolution. Geophys. Res. Lett. 49, 97428 (2022).

    Article  Google Scholar 

  103. Li, J. J. & Fang, X. M. Uplift of the Tibetan Plateau and environmental changes. Chin. Sci. Bull. 44, 2117–2124 (1999).

    Article  Google Scholar 

  104. Deng, T. et al. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun. Biol. 4, 639–639 (2021).

    Article  Google Scholar 

  105. Wang, X. M., Flynn, L. J. & Fortelius, M. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology 124–141 (Columbia Univ. Press, 2013).

  106. Fang, X. M. et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth Sci. Rev. 190, 460–485 (2019).

    Article  Google Scholar 

  107. Yang, Y. B., Han, W. X., Ye, C. C., Galy, A. & Fang, X. M. Trends and transitions in silicate weathering in the Asia interior (NE Tibet) since 53 Ma. Front. Earth Sci. 10, 824404 (2022).

    Article  Google Scholar 

  108. Clift, P. D., Wan, S. M. & Blusztajn, J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth Sci. Rev. 130, 86–102 (2014).

    Article  Google Scholar 

  109. Ren, X. P. et al. Temperature control on silicate weathering intensity and evolution of the neogene East Asian Summer Monsoon. Geophys. Res. Lett. 47, 088808 (2020). This work shows that the East Asian Summer Monsoon intensified during high CO2 conditions 17–14 Ma, weakened 14–11 Ma due to climate cooling but intensified again at 11–7 and 4–2.7 Ma, driven by tectonic changes in palaeogeography such as TP uplift and closure of the Panama Seaway.

    Article  Google Scholar 

  110. Guo, Z. T., Peng, S. Z., Hao, Q. Z., Biscaye, P. E. & Liu, T. S. Origin of the Miocene–Pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 11–26 (2001).

    Article  Google Scholar 

  111. Ding, Z. L. et al. Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 49–66 (1999).

    Article  Google Scholar 

  112. Ding, Z. L., Yang, S. L., Sun, J. M. & Liu, T. S. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet. Sci. Lett. 185, 99–109 (2001).

    Article  Google Scholar 

  113. Ge, J. Y. et al. Major changes in East Asian climate in the mid-Pliocene: triggered by the uplift of the Tibetan Plateau or global cooling? J. Asian Earth Sci. 69, 48–59 (2013).

    Article  Google Scholar 

  114. Wu, N. Q. et al. Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial molluscan record from the Chinese red clay formation and implication for palaeoclimatic evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 233, 287–299 (2006).

    Article  Google Scholar 

  115. Hao, Q., Oldfield, F., Bloemendal, J. & Guo, Z. The magnetic properties of loess and paleosol samples from the Chinese Loess Plateau spanning the last 22 million years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 389–404 (2008).

    Article  Google Scholar 

  116. Zhang, H. B. et al. Spatially variable provenance of the Chinese Loess Plateau. Geology 49, 1155–1159 (2021).

    Article  Google Scholar 

  117. Miao, Y. et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 30–38 (2011).

    Article  Google Scholar 

  118. Zhuang, G., Brandon, M. T., Pagani, M. & Krishnan, S. Leaf wax stable isotopes from northern Tibetan Plateau: implications for uplift and climate since 15 Ma. Earth Planet. Sci. Lett. 390, 186–198 (2014).

    Article  Google Scholar 

  119. Song, B. W. et al. Miocene Sr-87/Sr-86 ratios of ostracods in the northern Qaidam Basin, NE Tibetan Plateau, and links with regional provenance, weathering and eolian input. Palaeogeogr. Palaeoclimatol. Palaeoecol. 552, 109775 (2020).

    Article  Google Scholar 

  120. Li, J. J. et al. Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quat. Res. 81, 400–423 (2014). This work describes a persistent stepwise accelerated enhancement of the East Asian Winter Monsoon and drying of the Asian interior coupled with tectonic uplifts since ~8 Ma and later also with global cooling.

    Article  Google Scholar 

  121. Ding, Z. L., Rutter, N. W. & Liu, T. S. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications. Quat. Int. 40, 53–60 (1997).

    Article  Google Scholar 

  122. An, Z. S. et al. Eolian evidence from the Chinese Loess Plateau: the onset of the Late Cenozoic Great Glaciation in the northern hemisphere and Qinghai–Xizang Plateau uplift forcing. Sci. China Ser. D Earth Sci 42, 258–271 (1999).

    Article  Google Scholar 

  123. Fang, X. M., Xi, X. X., Li, J. J. & Mu, D. F. The discovery and significance of the late Miocene climate drying event in western China. Chin. Sci. Bull. 42, 2521–2524 (1997).

    Google Scholar 

  124. Ma, Y. Z., Li, J. J. & Fang, X. M. Pollen-based vegetational and climatic records during 30.6 to 5.0 My from Linxia area, Gansu. Chin. Sci. Bull. 43, 301–304 (1998).

    Google Scholar 

  125. Ma, Y. Z., Fang, X. M., Li, J. J., Wu, F. L. & Zhang, J. The vegetation and climate change during Neocene and early Quaternary in Jiuxi Basin, China. Sci. China Ser. D Earth Sci 48, 676–688 (2005).

    Article  Google Scholar 

  126. Hui, Z. et al. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 373–382 (2011).

    Article  Google Scholar 

  127. Zhao, L. et al. Vegetation dynamics in response to evolution of the Asian Monsoon in a warm world: pollen evidence from the Weihe Basin, Central China. Glob. Planet. Chang. 193, 103269 (2020).

    Article  Google Scholar 

  128. Tang, Z. H. et al. Late Cenozoic Central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet. Sci. Lett. 302, 439–447 (2011).

    Article  Google Scholar 

  129. Fan, M. J., Song, C. H., Dettman, D. L., Fang, X. M. & Xu, X. H. Intensification of the Asian Winter Monsoon after 7.4 Ma: grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth Planet. Sci. Lett. 248, 186–197 (2006).

    Article  Google Scholar 

  130. Liu, Y. T. et al. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 550, 109730 (2020).

    Article  Google Scholar 

  131. Bao, J. et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the late Cenozoic. J. Asian Earth Sci. 170, 155–165 (2019).

    Article  Google Scholar 

  132. Yang, R. S. et al. Late Miocene intensified tectonic uplift and climatic aridification on the northeastern Tibetan Plateau: evidence from clay mineralogical and geochemical records in the Xining Basin. Geochem. Geophys. Geosyst. 20, 829–851 (2019).

    Article  Google Scholar 

  133. Lyu, H. Z. et al. East Asian paleoclimate change in the Weihe Basin (Central China) since the middle Eocene revealed by clay mineral analysis. Sci. China Earth Sci. 64, 1285–1304 (2021).

    Article  Google Scholar 

  134. Yang, Y. et al. Plateau uplift forcing climate change around 8.6 Ma on the northeastern Tibetan Plateau: evidence from an integrated sedimentary Sr record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 418–431 (2016).

    Article  Google Scholar 

  135. Yang, Y. B. et al. Eolian dust forcing of river chemistry on the northeastern Tibetan Plateau since 8 Ma. Earth Planet. Sci. Lett. 464, 200–210 (2017).

    Article  Google Scholar 

  136. Ding, Z. L., Sun, J. M., Yang, S. L. & Liu, T. S. Preliminary magnetostratigraphy of a thick eolian red clay–loess sequence at Lingtai, the Chinese Loess Plateau. Geophys. Res. Lett. 25, 1225–1228 (1998).

    Article  Google Scholar 

  137. Lu, L. Q., Fang, X. M., Mason, J. A., Li, J. J. & An, Z. S. The evolution of coupling of Asian winter monsoon and high latitude climate of northern hemisphere — grain evidence from 8.1 Ma loess-red clay sequence on the Chinese central Loess Plateau. Sci. China Ser. D Earth Sci 44 (Supplement), 185–191 (2001).

    Article  Google Scholar 

  138. Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215–224 (1998).

    Article  Google Scholar 

  139. Zhang, W. F., Chen, J., Ji, J. F. & Li, G. J. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res. 23, 11–20 (2016).

    Article  Google Scholar 

  140. Wan, S. M., Li, A. C., Clift, P. D. & Stuut, J.-B. W. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 561–582 (2007).

    Article  Google Scholar 

  141. Wu, F. L. et al. Plio-Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet. Sci. Lett. 257, 160–169 (2007).

    Article  Google Scholar 

  142. Cai, M., Fang, X., Wu, F., Miao, Y. & Appel, E. Pliocene–Pleistocene stepwise drying of Central Asia: evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Glob. Planet. Chang. 94-95, 72–81 (2012).

    Article  Google Scholar 

  143. Wang, J. Y., Fang, X. M., Appel, E. & Song, C. H. Pliocene–Pleistocene climate change at the NE Tibetan Plateau deduced from lithofacies variation in the drill core SG-1, Western Qaidam Basin, China. J. Sediment. Res. 82, 933–952 (2012).

    Article  Google Scholar 

  144. Yang, Y. B., Fang, X. M., Galy, A., Appel, E. & Li, M. H. Quaternary paleolake nutrient evolution and climatic change in the western Qaidam Basin deduced from phosphorus geochemistry record of deep drilling core SG-1. Quat. Int. 313-314, 156–167 (2013).

    Article  Google Scholar 

  145. Wu, F. L., Fang, X. M., Herrmann, M., Mosbrugger, V. & Miao, Y. F. Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records. Glob. Planet. Chang. 76, 16–21 (2011).

    Article  Google Scholar 

  146. Fang, X. M. et al. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc. Natl Acad. Sci. USA 117, 24729–24734 (2020).

    Article  Google Scholar 

  147. Fang, X. M. et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang. Chin. Sci. Bull. 47, 1381–1387 (2002).

    Article  Google Scholar 

  148. Wu, F. Y., Liu, Z. C., Liu, X. C. & Ji, W. Q. Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol. Sin. 31, 1–36 (2015).

    Google Scholar 

  149. Lu, H. J., Tian, X. B., Yun, K. & Li, H. B. Convective removal of the Tibetan Plateau mantle lithosphere by similar to 26 Ma. Tectonophysics 731, 17–34 (2018).

    Article  Google Scholar 

  150. Sun, J. et al. Palynological evidence for the latest Oligocene–early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).

    Article  Google Scholar 

  151. Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).

    Article  Google Scholar 

  152. Xiong, Z. Y. et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 8, eabj0944 (2022).

    Article  Google Scholar 

  153. Wu, F., Miao, D., Chang, M. M., Shi, G. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).

    Article  Google Scholar 

  154. Wang, E. C. et al. Flexural bending of southern Tibet in a retro foreland setting. Sci. Rep. 5, 12076 (2015).

    Article  Google Scholar 

  155. Gebelin, A. et al. The Miocene elevation of Mount Everest. Geology 41, 799–802 (2013).

    Article  Google Scholar 

  156. Li, S. F. et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741 (2021).

    Article  Google Scholar 

  157. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article  Google Scholar 

  158. Wu, F. L., Miao, Y. F., Meng, Q. Q., Fang, X. M. & Sun, J. M. Late Oligocene Tibetan Plateau warming and humidity: evidence from a sporopollen record. Geochem. Geophys. Geosyst. 20, 434–441 (2019).

    Article  Google Scholar 

  159. Boos, W. R. & Kuang, Z. Sensitivity of the South Asian Monsoon to elevated and non-elevated heating. Sci. Rep. 3, 1192 (2013).

    Article  Google Scholar 

  160. Li, Q., Li, L., Zhang, Y. Y. & Guo, Z. J. Oligocene incursion of the Paratethys seawater to the Junggar Basin, NW China: insight from multiple isotopic analysis of carbonate. Sci. Rep. 10, 6601 (2020).

    Article  Google Scholar 

  161. Broccoli, A. J. & Manabe, S. The effects of orography on midlatitude northern hemisphere dry climate. J. Clim. 5, 1181–1201 (1992).

    Article  Google Scholar 

  162. Ritts, B. D. et al. From sea level to high elevation in 15 million years: uplift history of the northern Tibetan Plateau margin in the Altun Shan. Am. J. Sci. 308, 657–678 (2008).

    Article  Google Scholar 

  163. Yuan, D. Y. et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies. Tectonics 32, 1358–1370 (2013).

    Article  Google Scholar 

  164. Wang, W. T. et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology. Tectonics 39, e2019tc005705 (2020).

    Article  Google Scholar 

  165. Wang, Q., McDermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33, 465–468 (2005).

    Article  Google Scholar 

  166. Qi, Y., Wang, Q., Zhu, Y. T., Shi, L. C. & Yang, Y. N. Miocene olivine leucitites in the Hoh Xil Basin, northern Tibet: implications for intracontinental lithosphere melting and surface uplift of the Tibetan Plateau. J. Petrol. 61, egaa026 (2020).

    Article  Google Scholar 

  167. Wang, E. et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat. Geosci. 5, 640–645 (2012).

    Article  Google Scholar 

  168. Clark, M. K. et al. Late Cenozoic uplift of southeastern Tibet. Geology 33, 525–528 (2005).

    Article  Google Scholar 

  169. Nie, J. S. et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nat. Geosci. 11, 944 (2018).

    Article  Google Scholar 

  170. Miao, Y. F., Herrmann, M., Wu, F. L., Yan, X. L. & Yang, S. L. What controlled mid-late Miocene long-term aridification in Central Asia? — Global cooling or Tibetan Plateau uplift: a review. Earth Sci. Rev. 112, 155–172 (2012). This work shows that global cooling provided a dominant driving factor for the drying of Eurasia in the middle Miocene.

    Article  Google Scholar 

  171. Liu, X. D., Sun, H., Miao, Y. F., Dong, B. W. & Yin, Z. Y. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat. Sci. Rev. 116, 1–14 (2015).

    Article  Google Scholar 

  172. Li, G. J., Pettke, T. & Chen, J. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology 39, 199–202 (2011).

    Article  Google Scholar 

  173. Ding, Z. L. & Liu, D. S. Climatic correlation between Chinese Loess and deep-sea cores in the last 1.8 Ma. Chin. Sci. Bull. 37, 217–220 (1992).

    Google Scholar 

  174. Shi, Z. G. et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change. Clim. Dyn. 37, 2289–2301 (2011).

    Article  Google Scholar 

  175. France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997).

    Article  Google Scholar 

  176. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  Google Scholar 

  177. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–U406 (2007).

    Article  Google Scholar 

  178. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  Google Scholar 

  179. Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    Article  Google Scholar 

  180. Kump, L. R. & Arthur, M. A. Global Chemical Erosion During the Cenozoic: Weatherability Balances the Budgets 399-426 (Press, 1997).

  181. Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian Monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Article  Google Scholar 

  182. Yang, Y. B. et al. Monsoon-enhanced silicate weathering as a new atmospheric CO2 consumption mechanism contributing to fast late Miocene global cooling. Paleoceanogr. Paleoclimatol. 36, e2020PA004008 (2021). This work reveals a causal link between the late Miocene intensification of the East Asian Monsoon and global cooling since ~7 Ma through enhanced silicate weathering.

    Article  Google Scholar 

  183. Yang, Y. B. et al. Neodymium isotopic constraints on Cenozoic Asian dust provenance changes linked to the exhumation history of the northern Tibetan Plateau and the Central Asian Orogenic Belt. Geochim. Cosmochim. Acta 296, 38–55 (2021).

    Article  Google Scholar 

  184. Gao, S. et al. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62, 1959–1975 (1998).

    Article  Google Scholar 

  185. Rudnick, R. L. & Gao, S. Composition of the continental crust. Treat. Geochem. 3, 1–65 (2004).

    Google Scholar 

  186. Xu, Y. G., He, B., Chung, S. L., Menzies, M. A. & Frey, F. A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32, 917–920 (2004).

    Article  Google Scholar 

  187. Laurent, B., Marticorena, B., Bergametti, G. & Mei, F. Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob. Planet. Chang. 52, 121–141 (2006).

    Article  Google Scholar 

  188. Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci. 2, 557–560 (2009).

    Article  Google Scholar 

  189. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  190. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  Google Scholar 

  191. Pei, Q. M. et al. Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: current knowledge and future perspectives. Earth Sci. Rev. 220, 103753 (2021).

    Article  Google Scholar 

  192. Li, J. X. et al. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat. Commun. 9, 3026 (2018).

    Article  Google Scholar 

  193. Wang, X. et al. Cenozoic paleo-environmental evolution of the Pamir–Tien Shan convergence zone. J. Asian Earth Sci. 80, 84–100 (2014).

    Article  Google Scholar 

  194. Liu, C. Y. et al. Eccentricity forcing of East Asian monsoonal systems over the past 3 million years. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107055118 (2021).

    Article  Google Scholar 

  195. Ao, H. et al. Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the late Oligocene high CO2 world. Sci. Adv. https://doi.org/10.1126/sciadv.abk2318 (2021).

    Article  Google Scholar 

  196. Sun, Y. et al. Diverse manifestations of the mid-Pleistocene climate transition. Nat. Commun. https://doi.org/10.1038/s41467-018-08257-9 (2019).

    Article  Google Scholar 

  197. Sun, Y. et al. Persistent orbital influence on millennial climate variability through the Pleistocene. Nat. Geosci. 14, 812 (2021).

    Article  Google Scholar 

  198. Wang, Y. C. et al. Combined high- and low-latitude forcing of East Asian Monsoon precipitation variability in the Pliocene warm period. Sci. Adv. https://doi.org/10.1126/sciadv.abc2414 (2020).

    Article  Google Scholar 

  199. Scotese, C. R. & Wright, N. Paleomap paleodigital elevation models (PaleoDEMS) for the Phanerozoic Paleomap Project. Earthbyte https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (2018).

  200. Popov, S. et al. Lithological–Paleogeographic Maps of Paratethys 10 Maps Late Eocene to Pliocene (Courier Forschungsinstitit Senckenberg, 2004).

  201. Boucot, A. J., Chen, X., Scotese, C. R. & Fan, J. X. Global Paleoclimate Reconstruction of Phanerozoic (Science, 2009).

  202. Fang, X. M. et al. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau. Sci. Rep. https://doi.org/10.1038/srep32848 (2016).

    Article  Google Scholar 

  203. Koutsodendris, A. et al. Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early northern hemisphere glaciation. Glob. Planet. Chang. 180, 117–125 (2019).

    Article  Google Scholar 

  204. Ma, Y. Z. et al. Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma. Chin. Sci. Bull. 50, 2234–2243 (2005).

    Article  Google Scholar 

  205. Rea, D. K. & Janecek, T. R. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar. Geol. 49, 149–167 (1982).

    Article  Google Scholar 

  206. Lu, H., Wang, X. & Li, L. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in Central Asia. Geol. Soc. Lond. Spec. Publ. 342, 29–44 (2010).

    Article  Google Scholar 

  207. Lee, T. Y. & Lawver, L. A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85 (1995).

    Article  Google Scholar 

  208. Molnar, P. & Stock, J. M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics https://doi.org/10.1029/2008tc002271 (2009).

    Article  Google Scholar 

  209. van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics https://doi.org/10.1029/2011tc002908 (2011).

    Article  Google Scholar 

  210. Kaya, M. Y. et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): role of intensified tectonic activity at ca. 41 Ma. Basin Res. 31, 461–486 (2019).

    Article  Google Scholar 

  211. He, J. H. A review of the Asian–Pacific Monsoon. Atmos. Ocean. Sci. Lett. 2, 91–96 (2009).

    Article  Google Scholar 

  212. Chen, J. Q. & Bordoni, S. Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: an energetic perspective. J. Clim. 27, 3052–3072 (2014).

    Article  Google Scholar 

  213. Ding, Y. & Krishnamurti, T. N. Heat-budget of the Siberian High and the winter monsoon. Mon. Weather. Rev. 115, 2428–2449 (1987).

    Article  Google Scholar 

  214. Hahn, D. G. & Manabe, S. Role of mountains in South Asian Monsoon circulation. J. Atmos. Sci. 32, 1515–1541 (1975).

    Article  Google Scholar 

  215. Ma, D., Boos, W. & Kuang, Z. M. Effects of orography and surface heat fluxes on the South Asian Summer Monsoon. J. Clim. 27, 6647–6659 (2014).

    Article  Google Scholar 

  216. Sarr, A. C. et al. Neogene South Asian Monsoon rainfall and wind histories diverged due to topographic effects. Nat. Geosci. 15, 314 (2022).

    Article  Google Scholar 

  217. Shi, Z., Liu, X., Liu, Y., Sha, Y. & Xu, T. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Clim. Dyn. 44, 3067–3076 (2015).

    Article  Google Scholar 

  218. Sun, H. & Liu, X. D. Impacts of the uplift of four mountain ranges on the arid climate and dust cycle of inland Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 167–179 (2018).

    Article  Google Scholar 

  219. Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R. & Krijgsman, W. Step-wise change of Asian interior climate preceding the Eocene–Oligocene transition (EOT). Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 399–412 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Barbolini, Y. Miao, Z. Tang, Z. Hui, X. Wang, L. Zhao and S. Wan for providing the original data. This work is supported by the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0707), the National Natural Science Foundation of China BSCTPES project (41988101-01) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20070201).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content.

Corresponding author

Correspondence to Xiaomin Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks H. Lu, A. Farnsworth, M. Ingalls and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Proto-Paratethys Sea

A shallow epicontinental sea, extended from Cretaceous to Palaeogene times across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China.

Intertropical Convergence Zone

(ITCZ). A convergence zone of the north-east and the south-east trade winds from the both hemispheres. The ITCZ runs along the thermal equator, but varies seasonally between roughly 20–22° in north and south latitude.

Solar insolation

A measure of the solar radiation flux that is incident per unit of horizontal area for a specified locality. It depends mainly on the tilt of the measuring surface, the height of the sun above the horizon and atmospheric conditions.

Obliquity

The angle between the rotational axis of an object and its orbital axis, the line that is perpendicular to its orbital plane. For the Earth, it is defined as the angle between the planes of the Earth’s equator and orbit with a current value of about 23° 26′ 11.57.

Eccentricity

A measure of deviation from circularity. A value of zero is a circular orbit and a large value means a higher uncircular curve. For the Earth whose orbit approximates an ellipse, eccentricity measures the departure of the Earth’s orbit from circularity.

Perihelion

The point nearest to the sun in the path of an orbiting celestial body (planet, asteroid or comet); the opposite of aphelion (the point that is furthest from the sun).

Paraceratherium linxiaense sp.

The largest land mammal during the Cenozoic, which lived in climates sufficiently warm and subhumid for sufficient feeding.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Fang, X., Yang, Y. et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat Rev Earth Environ 3, 684–700 (2022). https://doi.org/10.1038/s43017-022-00331-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00331-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing