Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light stimulates growth of proteorhodopsin-containing marine Flavobacteria

Abstract

Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic1. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world’s oceans2,3,4,5. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown6. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world’s oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Images of Flavobacteria isolates.
Figure 2: Phylogenetic tree of PR amino acid sequences.
Figure 3: Growth of MED134 in seawater cultures.
Figure 4: RT–PCR analysis of PR expression in MED134 compared with 16S rRNA levels.

References

  1. 1

    Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000)

    ADS  Article  Google Scholar 

  2. 2

    Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001)

    ADS  Article  Google Scholar 

  3. 3

    de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Sabehi, G. et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ. Microbiol. 5, 842–849 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Sabehi, G. et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3, e273 (2005)

    Article  Google Scholar 

  9. 9

    Giovannoni, S. & Rappé, M. in Microbial Ecology of the Oceans (ed. Kirchman, D.) 47–84 (Wiley-Liss, New York, 2000)

    Google Scholar 

  10. 10

    Glöckner, F. O., Fuchs, B. M. & Amann, R. Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721–3726 (1999)

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Hagström, Å. et al. Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl. Environ. Microbiol. 68, 3628–3633 (2002)

    Article  Google Scholar 

  12. 12

    Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100 (2002)

    CAS  PubMed  Google Scholar 

  13. 13

    Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Dioumaev, A. K. et al. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41, 5348–5358 (2002)

    CAS  Article  Google Scholar 

  15. 15

    Wang, W.-W., Sineshchekov, O. A., Spudich, E. N. & Spudich, J. L. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Neutze, R. et al. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565, 144–167 (2002)

    CAS  Article  Google Scholar 

  17. 17

    Teramoto, M., Takaichi, S., Inomata, Y., Ikenaga, H. & Misawa, N. Structural and functional analysis of a lycopene L-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett. 545, 120–126 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Abell, G. C. J. & Bowman, J. P. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol. Ecol. 51, 265–277 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. 70, 6753–6766 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Riemann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Shiba, T., Simidu, U. & Taga, N. Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 38, 43–48 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kolber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Béjà, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Bielawski, J. P., Dunn, K. A., Sabehi, G. & Béjà, O. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc. Natl Acad. Sci. USA 101, 14824–14829 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Sabehi, G., Béjà, O., Suzuki, M. T., Preston, C. M. & DeLong, E. F. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ. Microbiol. 6, 903–910 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Arnautovic, J. O. Ekström, M. Widell, E. Lundberg and E. Lindehoff for help with growth experiments, ultracentrifugation, cloning, dissolved organic carbon and nutrient analysis, respectively, and T. Berman for helpful comments on the manuscript. We thank the Swedish Science Council, the Spanish Ministerio de Educación y Ciencia, Swegene, EMEP, and SSF for supporting this research.

The genomes of strains MED134, MED152 and MED217 are deposited in GenBank under accession numbers AAMZ00000000, AANA00000000 and AANC00000000, and their 16S rRNA gene sequences under accession numbers DQ481462, DQ481463 and DQ294290, respectively. The amino acid sequences of MED134 and MED152 PR are deposited in GenBank under accession numbers ZP_01049273 and ZP_01054176.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jarone Pinhassi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains the following: Supplementary Figures and Legends 1-3; Supplementary Methods; Supplementary Notes. The Supplementary Figures show proteorhodopsin amino acid sequence alignment, laser-flash induced absorbance changes of proteorhodopsin in membrane preparation of Dokdonia sp. MED134 and arrangement of proteorhodopsin, ß-carotene and retinal synthesis genes. (PDF 1576 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gómez-Consarnau, L., González, J., Coll-Lladó, M. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007). https://doi.org/10.1038/nature05381

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing