Subjects

Abstract

When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

  2. 2.

    et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

  3. 3.

    , , , & In search of the progenitors of type IA supernovae. Publ. Astron. Soc. Pacif. 107, 1019–1028 (1995)

  4. 4.

    , , , & How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

  5. 5.

    et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, 101–104 (1993)

  6. 6.

    et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature 437, 851–854 (2005)

  7. 7.

    et al. The galaxy hosts and large-scale environments of short-hard γ-ray bursts. Astrophys. J. Lett. (in the press): preprint at (2005)

  8. 8.

    et al. HST and Palomar imaging of GRB 990123: Implications for the nature of gamma-ray bursts and their hosts. Astrophys. J. 519, 13–16 (1999)

  9. 9.

    et al. Host galaxies of gamma-ray bursts: Spectral energy distributions and internal extinction. Astron. Astrophys. 372, 438–455 (2001)

  10. 10.

    et al. Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? Astron. Astrophys. 400, 499–510 (2003)

  11. 11.

    , & UV star-formation rates of GRB host galaxies. Astron. Astrophys. 425, 913–926 (2004)

  12. 12.

    , , & The host galaxy of GRB 970508. Astrophys. J. 507, L25–L28 (1998)

  13. 13.

    et al. VLT spectroscopy of GRB 990510 and GRB 990712: Probing the faint and bright ends of the gamma-ray burst host galaxy population. Astrophys. J. 546, 672–680 (2001)

  14. 14.

    et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 401, 453–456 (1999)

  15. 15.

    et al. Evidence for a supernova in reanalyzed optical and near-infrared images of GRB 970228. Astrophys. J. 536, 185–194 (2000)

  16. 16.

    et al. GRB 020410: A gamma-ray burst afterglow discovered by its supernova light. Astrophys. J. 624, 880–888 (2005)

  17. 17.

    et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003)

  18. 18.

    et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

  19. 19.

    et al. Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. Astron. Astrophys. 406, L33–L37 (2003)

  20. 20.

    et al. SN 2003lw and GRB 031203: A bright supernova for a faint gamma-ray burst. Astrophys. J. 609, L5–L8 (2004)

  21. 21.

    , & A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophys. J. 609, 952–961 (2004)

  22. 22.

    & Fundamental physical parameters of collimated gamma-ray burst afterglows. Astrophys. J. 560, L49–L53 (2001)

  23. 23.

    et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir. Astrophys. J. 562, L55–L58 (2001)

  24. 24.

    , & Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001)

  25. 25.

    , & Supernovae and massive star formation regions. Astron. J. 111, 2017–2027 (1996)

  26. 26.

    , & Classifications of the host galaxies of supernovae, Set III. Publ. Astron. Soc. Pacif. 117, 773–782 (2005)

  27. 27.

    , , , & The rates of hypernovae and gamma-ray bursts: Implications for their progenitors. Astrophys. J. 607, L17–L20 (2004)

  28. 28.

    , & The observed offset distribution of gamma-ray bursts from their host galaxies: A robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002)

  29. 29.

    et al. Identification of Type Ia supernovae at redshift 1.3 and beyond with the Advanced Camera for Surveys on the Hubble Space Telescope. Astrophys. J. 600, L163–L166 (2004)

  30. 30.

    et al. The Hubble Higher z Supernova Search: Supernovae to z1.6 and constraints on Type Ia progenitor models. Astrophys. J. 613, 200–223 (2004)

  31. 31.

    et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004)

  32. 32.

    et al. Gamma-ray burst selected high redshift galaxies: Comparison to field galaxy populations to z3. Astrophys. J. 633, 29–40 (2005)

  33. 33.

    , & Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

  34. 34.

    et al. GRB 021004: A possible shell nebula around a Wolf-Rayet star gamma-ray burst progenitor. Astrophys. J. 595, 935–949 (2003)

  35. 35.

    et al. Probing a gamma-ray burst progenitor at a redshift of z = 2: A comprehensive observing campaign of the afterglow of GRB 030226. Astron. J. 128, 1942–1954 (2004)

  36. 36.

    & in The Initial Mass Function 50 Years Later (eds Corbelli, E., Plla, F. & Zinnecker, H.) 125–186 (Springer, Dordrecht, 2005)

  37. 37.

    et al. Evidence for a supernova associated with the x-ray flash 020903. Astrophys. J. (submitted)

  38. 38.

    et al. The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity. Astron. Astrophys. 419, 927–940 (2004)

  39. 39.

    et al. The host galaxy of GRB 031203: Implications of its low metallicity, low redshift, and starburst nature. Astrophys. J. 611, 200–207 (2004)

  40. 40.

    , , & Echelle spectroscopy of a GRB afterglow at z = 3.969: A new probe of the interstellar and intergalactic media in the young Universe. Astrophys. J. 634, L25–L28 (2005)

  41. 41.

    & Metallicities of galaxies in the GOODS-North Field. Astrophys. J. 617, 240–261 (2004)

  42. 42.

    , , , & Massive stars in the SGR 1806-20 cluster. Astrophys. J. 622, L49–L52 (2005)

  43. 43.

    & Reduced Wolf-Rayet line luminosities at low metallicity. Astron. Astrophys. 449, 711–722 (2006)

  44. 44.

    & The progenitor stars of gamma-ray Bursts. Astrophys. J. 637, 914–921 (2005)

  45. 45.

    & Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 443, 643–648 (2005)

  46. 46.

    , , & A redshift survey of the submillimeter galaxy population. Astrophys. J. 622, 772–796 (2005)

  47. 47.

    et al. On the Lyα emission from gamma-ray burst host galaxies: Evidence for low metallicities. Astron. Astrophys. 406, L63–L66 (2003)

  48. 48.

    , , & Late-time radio observations of 68 Type Ibc supernovae: Strong constraints on off-axis gamma-ray bursts. Astrophys. J. 638, 930–937 (2006)

  49. 49.

    & Galactic and extragalactic supernova rates. Annu. Rev. Astron. Astrophys. 29, 363–407 (1991)

  50. 50.

    et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005)

Download references

Acknowledgements

Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. Observations analysed in this work were taken by the NASA/ESA Hubble Space Telescope under programmes: 7785, 7863, 7966, 8189, 8588, 9074 and 9405 (Principal Investigator, A.S.F.); 7964, 8688, 9180 and 10135 (PI, S. R. Kulkarni); 8640 (PI, S.T.H.). We thank N. Panagia, N. Walborn and A. Soderberg for conversations; A. Filippenko and collaborators for early-time images of GRB 980326; and J. Bloom and collaborators for making public their early observations of GRB 020322.

Author information

Affiliations

  1. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

    • A. S. Fruchter
    • , A. J. Levan
    • , L. Strolger
    • , D. Bersier
    • , I. Burud
    • , J. M. Castro Cerón
    • , H. C. Ferguson
    • , R. A. Gibbons
    • , J. Gorosabel
    • , Z. Levay
    • , M. Livio
    • , L. Petro
    • , J. E. Rhoads
    • , A. G. Riess
    •  & K. C. Sahu
  2. Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK

    • A. J. Levan
  3. Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

    • A. J. Levan
    •  & N. R. Tanvir
  4. Physics & Astronomy, TCCW 246, Western Kentucky University, 1 Big Red Way, Bowling Green, Kentucky 42101, USA

    • L. Strolger
  5. European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago, Chile

    • P. M. Vreeswijk
    •  & A. Smette
  6. Department of Astronomy & Astrophysics, University of California, 1156 High Street, Santa Cruz, California 95064, USA

    • S. E. Thorsett
    •  & S. E. Woosley
  7. Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK

    • D. Bersier
  8. Norwegian Meteorological Institute, PO Box 43, Blindern, N-0313 Oslo, Norway

    • I. Burud
  9. Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

    • J. M. Castro Cerón
    • , J. P. U. Fynbo
    •  & J. Hjorth
  10. Instituto de Astrofísica de Andalucía (CSIC), Camino Bajo de Huétor, 50, 18008 Granada, Spain

    • A. J. Castro-Tirado
    •  & J. Gorosabel
  11. California Institute of Technology, Mail Code 105-24, Pasadena, California 91125, USA

    • C. Conselice
  12. School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

    • C. Conselice
  13. Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    • T. Dahlen
  14. Physics Department, University of Notre Dame, 225 Nieuwland Hall, Notre Dame, Indiana 46556, USA

    • P. M. Garnavich
  15. Vanderbilt University, Department of Physics and Astronomy, 6301 Stevenson Center, Nashville, Tennessee 37235, USA

    • R. A. Gibbons
  16. Code 667, Extraterrestial Planets and Stellar Astrophysics, Exploration of the Universe Division,

    • T. R. Gull
  17. Code 660.1, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • S. T. Holland
  18. NASA/Marshall Space Flight Center, VP-62, National Space Science & Technology Center, 320 Sparkman Drive, Huntsville, Alabama 35805, USA

    • C. Kouveliotou
  19. Renaissance Technologies Corporation, 600 Route 25A, East Setauket, New York 11733, USA

    • M. R. Metzger
  20. Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Road, Berkeley, California 94720, USA

    • P. E. Nugent
  21. INAF, Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste, Italy

    • E. Pian
  22. Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

    • R. A. M. J. Wijers

Authors

  1. Search for A. S. Fruchter in:

  2. Search for A. J. Levan in:

  3. Search for L. Strolger in:

  4. Search for P. M. Vreeswijk in:

  5. Search for S. E. Thorsett in:

  6. Search for D. Bersier in:

  7. Search for I. Burud in:

  8. Search for J. M. Castro Cerón in:

  9. Search for A. J. Castro-Tirado in:

  10. Search for C. Conselice in:

  11. Search for T. Dahlen in:

  12. Search for H. C. Ferguson in:

  13. Search for J. P. U. Fynbo in:

  14. Search for P. M. Garnavich in:

  15. Search for R. A. Gibbons in:

  16. Search for J. Gorosabel in:

  17. Search for T. R. Gull in:

  18. Search for J. Hjorth in:

  19. Search for S. T. Holland in:

  20. Search for C. Kouveliotou in:

  21. Search for Z. Levay in:

  22. Search for M. Livio in:

  23. Search for M. R. Metzger in:

  24. Search for P. E. Nugent in:

  25. Search for L. Petro in:

  26. Search for E. Pian in:

  27. Search for J. E. Rhoads in:

  28. Search for A. G. Riess in:

  29. Search for K. C. Sahu in:

  30. Search for A. Smette in:

  31. Search for N. R. Tanvir in:

  32. Search for R. A. M. J. Wijers in:

  33. Search for S. E. Woosley in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to A. S. Fruchter.

Supplementary information

PDF files

  1. 1.

    Supplementary Notes

    This file contains Supplementary Methods providing additional detail on the analysis. A Supplementary Notes section gives further detail on sample bias. Supplementary Tables provide details on the observations of the objects in the sample and Supplementary Figures show how the extent of the hosts as determined by our analysis and the placement of the objects on the hosts.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature04787

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.