Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana

Abstract

Pollen–pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to prevent mating between closely related individuals. Other pistil factors, such as HT-B, 4936-factor and the 120 kDa glycoprotein, are also required for pollen rejection but do not contribute to S-haplotype-specificity per se. Here we show that S-RNase is taken up and sorted to a vacuolar compartment in the pollen tubes. Antibodies to the 120 kDa glycoprotein label the compartment membrane. When the pistil does not express HT-B or 4936-factor, S-RNase remains sequestered, unable to cause rejection. Similarly, in wild-type pistils, compatible pollen tubes degrade HT-B and sequester S-RNase. We suggest that S-RNase trafficking and the stability of HT-B are central to S-specific pollen rejection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: S-RNase uptake in style-side defective backgrounds.
Figure 2: S-RNase compartmentalization.
Figure 3: Differential protein stability after compatible versus incompatible pollination.
Figure 4: HT-B in pollen tubes.
Figure 5: A model for S-RNase-based SI. S-RNases, 120K and HT-B are taken up from the ECM by endocytosis.

References

  1. 1

    de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants (Springer, Berlin, 2001)

    Book  Google Scholar 

  2. 2

    Kao, T.-h. & Tsukamoto, T. The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16, S72–S83 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Murfett, J., Atherton, T. L., Mou, B., Gasser, C. S. & McClure, B. A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367, 563–566 (1994)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lee, H.-S., Huang, S. & Kao, T.-h. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367, 560–563 (1994)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cornish, E. C., Pettitt, J. M., Bonig, I. & Clarke, A. E. Developmentally controlled expression of a gene associated with self-incompatibility in Nicotiana alata. Nature 326, 99–102 (1987)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Anderson, M. A. et al. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1, 483–491 (1989)

    CAS  Article  Google Scholar 

  7. 7

    McClure, B. S-RNase and SLF determine S-haplotype-specific pollen recognition and rejection. Plant Cell 16, 2840–2847 (2004)

    CAS  Article  Google Scholar 

  8. 8

    Entani, T. et al. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: Identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8, 203–213 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Sijacic, P. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429, 302–305 (2004)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ikeda, K. et al. Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex. Plant Reprod. 16, 235–243 (2004)

    CAS  Article  Google Scholar 

  11. 11

    Ushijima, K. et al. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39, 573–586 (2004)

    CAS  Article  Google Scholar 

  12. 12

    Ushijima, K. et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15, 771–781 (2003)

    CAS  Article  Google Scholar 

  13. 13

    McClure, B. A., Cruz-Garcia, F., Beecher, B. S. & Sulaman, W. Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann. Bot. 85, 113–123 (2000)

    Article  Google Scholar 

  14. 14

    McClure, B. A., Mou, B., Canevascini, S. & Bernatzky, R. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc. Natl Acad. Sci. USA 96, 13548–13553 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    O'Brien, M. et al. Molecular analysis of the stylar-expressed Solanum chacoense asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in Nicotiana. Plant J. 32, 1–12 (2002)

    Article  Google Scholar 

  16. 16

    Kondo, K. et al. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility. Plant J. 29, 627–636 (2002)

    CAS  Article  Google Scholar 

  17. 17

    Kondo, K. et al. Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors. Plant J. 30, 143–153 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Lind, J. L., Bacic, A., Clarke, A. E. & Anderson, M. A. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J. 6, 491–502 (1994)

    CAS  Article  Google Scholar 

  19. 19

    Lind, J. L., Bönig, I., Clarke, A. E. & Anderson, M. A. A style-specific 120 kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex. Plant Reprod. 9, 75–86 (1996)

    Article  Google Scholar 

  20. 20

    Cruz-Garcia, F., Hancock, C. N., Kim, D. & McClure, B. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 42, 295–304 (2005)

    CAS  Article  Google Scholar 

  21. 21

    Hancock, C. N., Kent, L. & McClure, B. The 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J. 43, 716–723 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Martin, F. W. The behaviour of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60, 101–109 (1968)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ai, Y., Kron, E. & Kao, T.-h. S-alleles are retained and expressed in a self-compatible cultivar of Petunia hybrida. Mol. Gen. Genet. 230, 353–358 (1991)

    CAS  Article  Google Scholar 

  24. 24

    Tsukamoto, T. et al. Breakdown of self-incompatibility in a natural population of Petunia axillaris (Solanaceae) in Uruguay containing both self-incompatible and self-compatible plants. Sex. Plant Reprod. 12, 6–13 (1999)

    Article  Google Scholar 

  25. 25

    Tsukamoto, T. et al. Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene. Sex. Plant Reprod. 15, 255–263 (2003)

    CAS  Google Scholar 

  26. 26

    Bernatzky, R., Glaven, R. H. & Rivers, B. A. S-related protein can be recombined with self-compatibility in interspecific derivatives of Lycopersicon. Biochem. Genet. 33, 215–225 (1995)

    CAS  Article  Google Scholar 

  27. 27

    Luu, D.-T., Xike, Q., Morse, D. & Cappadocia, M. S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature 407, 649–651 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    McClure, B. A., Gray, J. E., Anderson, M. A. & Clarke, A. E. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347, 757–760 (1990)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Qiao, H. et al. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16, 582–595 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Sonneveld, T., Tobutt, K. R., Vaughan, S. P. & Robbins, T. P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17, 37–51 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Qiao, H. et al. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16, 2307–2322 (2004)

    CAS  Article  Google Scholar 

  32. 32

    Hicks, G. R., Rojo, E., Hong, S., Carter, D. C. & Raikhel, N. V. Germinating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol. 134, 1227–1230 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Rogers, S. W., Burks, M. & Rogers, J. C. Monoclonal antibodies to barley aleurain and homologs from other plants. Plant J. 11, 1359–1368 (1997)

    CAS  Article  Google Scholar 

  34. 34

    Jauh, G.-Y., Phillips, T. E. & Rogers, J. C. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11, 1867–1882 (1999)

    CAS  Article  Google Scholar 

  35. 35

    van Deurs, B. et al. Estimation of the amount of internalized ricin that reaches the trans-golgi network. J. Cell Biol. 106, 253–267 (1988)

    CAS  Article  Google Scholar 

  36. 36

    Wesche, J., Rapak, A. & Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. Proc. Natl Acad. Sci. USA 274, 34443–34449 (1999)

    CAS  Google Scholar 

  37. 37

    Geitmann, A. in Fertilization in Higher Plants (eds Cresti, M., Cai, G. & Moscatelli, A.) (Springer, Berlin/Heidelberg, 1999)

    Google Scholar 

  38. 38

    Macintosh, G. C., Bariola, P. A., Newbigin, E. & Green, P. J. Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: Unexpected functions for ancient enzymes? Proc. Natl Acad. Sci. USA 98, 1018–1023 (2001)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Murfett, J. M. et al. S RNase and interspecific pollen rejection in the genus Nicotiana: Multiple pollen rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8, 943–958 (1996)

    CAS  Article  Google Scholar 

  40. 40

    Beecher, B. & McClure, B. A. Effects of RNases on rejection of pollen from Nicotiana tabacum and N. plumbaginifolia. Sex. Plant Reprod. 14, 69–76 (2001)

    CAS  Article  Google Scholar 

  41. 41

    Kho, Y. O. & Baer, J. Observing pollen tubes by means of fluorescence. Euphytica 17, 299–302 (1968)

    Google Scholar 

  42. 42

    Paris, N. & Rogers, J. C. The role of receptors in targeting soluble proteins from the secretory pathway to the vacuole. Plant Physiol. Biochem. 34, 223–237 (1996)

    CAS  Google Scholar 

  43. 43

    Tanner, V. A., Ploug, T. & Tao-Cheng, J. H. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures. J. Histochem. Cytochem. 44, 1481–1488 (1996)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kroll for manuscript assistance; H. Sassa for helpful discussions; J. Rogers for antibodies; and C. S. Gasser, S. J. Hiscock and C. Staiger for pre-review. The MU-Monsanto Plant Biology Program and grants from the US National Science Foundation supported this work. F.C.-G. was also supported by a grant from the Universidad Nacional Autonoma de Mexico.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce McClure.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This PDF file contains Supplementary Figs 1-4, 7 and 8 along with the legends for these figures. The file also contains a Supplementary Methods section and the legends for Supplementary Video Figs. 5 and 6. (PDF 413 kb)

Supplementary Movie S5

Compartmentalization in a compatible pollination. Animation of the image stack in Figure 2a (compatible, 16 h). The animation pans up and down through the image stack from two different views. (MOV 5637 kb)

Supplementary Movie S6

Compartment breakdown in an incompatible pollination. Animation of the image stack in Figure 2e (incompatible, 36 h). The animation pans up and down through the image stack from two different views. (MOV 7126 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldraij, A., Kondo, K., Lee, C. et al. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439, 805–810 (2006). https://doi.org/10.1038/nature04491

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing