Review Article | Published:

Foundations for engineering biology


Engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment. Unfortunately, our ability to quickly and reliably engineer biological systems that behave as expected remains quite limited. Foundational technologies that make routine the engineering of biology are needed. Vibrant, open research communities and strategic leadership are necessary to ensure that the development and application of biological technologies remains overwhelmingly constructive.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Levskaya, A. et al. Bacterial photography: Engineering Escherichia coli to see light. Nature doi:10.1038/nature04405 (this issue)

  2. 2

    Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

  3. 3

    Martin, V. J. et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003)

  4. 4

    Sprinzak, D. & Elowitz, M. B. Reconstruction of genetic circuits. Nature doi:10.1038/nature04335 (this issue)

  5. 5

    Szybalski, W. & Skalka, A. Nobel prizes and restriction enzymes. Gene 4, 181–182 (1978)

  6. 6

    Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979)

  7. 7

    Murray, A. W. & Szostak, J. W. Construction of artificial chromosomes in yeast. Nature 305, 189–193 (1983)

  8. 8

    Perlak, F. J. et al. Insect resistant cotton plants. Biotechnology 8, 939–943 (1990)

  9. 9

    Oltvai, Z. N. & Barabasi, A. L. Systems biology. Life's complexity pyramid. Science 298, 763–764 (2002)

  10. 10

    Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002)

  11. 11

    Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100025)

  12. 12

    Weber, M. in The Vocation Lectures (eds Owen, D. & Strong, T. B.; translator Livingstone, R.) 1–31 (Hackett Publishing, Indianapolis, Indiana, 2004).

  13. 13

    Knight, T. F. Engineering novel life. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100028)

  14. 14

    Whitesides, G. M. The once and future nanomachine. Sci. Am. 285, 78–83 (2001)

  15. 15

    Kirschner, M. W. The meaning of systems biology. Cell 20, 503–504 (2005)

  16. 16

    Benner, S. A. & Sismour, A. M. Synthetic biology. Nature Rev. Genet. 6, 533–543 (2005)

  17. 17

    Surowiecki, J. Turn of the century.WIRED 10.01 (2002).

  18. 18

    International Nucleotide Sequence Database Collaboration. (2005).

  19. 19

    Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genet. 29, 365–371 (2001)

  20. 20

    Protein Data Bank. (2005).

  21. 21

    Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), Enzyme supplement 5. Eur. J. Biochem. 264, 610–650 (1999)

  22. 22

    Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

  23. 23

    Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE—restriction enzymes and DNA methyltransferases. Nucleic Acids Res. 1, D230–D232 (2005)

  24. 24

    Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

  25. 25

    Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in Escherichia coli. Cell 113, 597–607 (2003)

  26. 26

    Knight, T. F. DARPA BioComp Plasmid Distribution 1.00 of Standard Biobrick Components MIT Synthetic Biology Working Group Reports published online 22 May 2002 (doi:1721.1/21167).

  27. 27

    Graham-Rowe, D. Britain may force DNA ‘barcodes’ for GM food.New Sci. (2003).

  28. 28

    Mead, C. & Conway, L. Introduction to VLSI Systems (Addison-Wesley, Reading, Massachusetts, 1980)

  29. 29

    Canton, B. Engineering the Interface Between Cellular Chassis and Integrated Biological Systems MIT Synthetic Biology Working Group Reports published online 8 August 2005 (doi:1721.1/19813).

  30. 30

    Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203–214 (2003)

  31. 31

    Stemmer, W. P. et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995)

  32. 32

    Yount, B., Curtis, K. M. & Baric, R. S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J. Virol. 74, 10600–10611 (2000)

  33. 33

    Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004)

  34. 34

    Sharp, P. A. RNA interference—2001. Genes Dev. 15, 485–490 (2001)

  35. 35

    Varmus, H. Reverse transcription. Sci. Am. 257, 56–59 (1987)

  36. 36

    Katz, L. & Burge, C. B. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res. 13, 2042–2051 (2003)

  37. 37

    Zarrinpar, A., Park, S. H. & Lim, W. A. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426, 676–680 (2003)

  38. 38

    Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005)

  39. 39

    Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998)

  40. 40

    von Neumann, J. in Collected Works (ed. Taub, A. H.) Vols 1–6 (Pergamon Press, New York, 1961–1963)

  41. 41

    Endy, D., Deese, I. & Wadey, C. Adventures in synthetic biology. Nature [online] (2005); also available at

  42. 42

    Tumpey, T. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005)

  43. 43

    Venter, J. C. Gene Synthesis Technology: State of the Science National Science Advisory Board on Biosecurity (conference) (2005).

  44. 44

    Dyson, F. The darwinian interlude. Technology Review (2005).

  45. 45

    Wolfe, S. A., Grant, R. A. & Pabo, C. O. Structure of a designed dimeric zinc finger protein bound to DNA. Biochemistry 42, 13401–13409 (2003)

Download references


I thank T. Knight, G. Sussman and R. Rettberg for teaching me about the theory and practice of engineering, especially as it relates to biology. I also thank A. Arkin, F. Arnold, R. Baric, F. Blattner, J. Braff, R. Brent, S. Bruck, C. Bustamante, B. Canton, R. Carlson, L. Chan, A. Che, G. Church, J. Collins, C. Conboy, L. Conway, R. Davis, M. Desai, J. Doyle, E. Eisenstadt, M. Elowitz, S. Forrest, T. Gardner, S. Goldstein, J. Gritton, H. Hellinga, G. Homsy, E. Horvitz, J. Jacobson, J. Kelly, T. Kalil, J. Keasling, D. Kirkpatrick, S. Kosuri, P. Lincoln, J. Mulligan, R. Murray, R. Nagpal, R. Newton, C. Pabo, I. Phillips, P. Rabinow, R. Shetty, P. Silver, B. Smith, C. Smolke, S. Sutton, C. Tomlin, J. Way, C. Webb, R. Weiss, S. Wolfe and A. Vesilind for their contributions to the ideas discussed here. Finally, I am grateful to R. Brent and N. Kuldell for comments on an earlier manuscript.

Author information

Competing interests

The author is an Assistant Professor of Biological Engineering at MIT, co-founder of Codon Devices, Inc., and co-founder and President of the BioBricks Foundation, a not-for-profit organization.

Correspondence to Drew Endy.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: The Registry of Standard Biological Parts.
Figure 2: An abstraction hierarchy that supports the engineering of integrated genetic systems.
Figure 3: Technology classes relevant to current and future biological risk.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.