Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sympatric speciation in Nicaraguan crater lake cichlid fish

Abstract

Sympatric speciation, the formation of species in the absence of geographical barriers, remains one of the most contentious concepts in evolutionary biology. Although speciation under sympatric conditions seems theoretically possible1,2,3,4,5, empirical studies are scarce and only a few credible examples of sympatric speciation exist6. Here we present a convincing case of sympatric speciation in the Midas cichlid species complex (Amphilophus sp.) in a young and small volcanic crater lake in Nicaragua. Our study includes phylogeographic, population-genetic (based on mitochondrial DNA, microsatellites and amplified fragment length polymorphisms), morphometric and ecological analyses. We find, first, that crater Lake Apoyo was seeded only once by the ancestral high-bodied benthic species Amphilophus citrinellus, the most common cichlid species in the area; second, that a new elongated limnetic species (Amphilophus zaliosus) evolved in Lake Apoyo from the ancestral species (A. citrinellus) within less than 10,000 yr; third, that the two species in Lake Apoyo are reproductively isolated; and fourth, that the two species are eco-morphologically distinct.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The study area.
Figure 2: Phylogeography of the Lake Apoyo Amphilophus species.
Figure 3: Bayesian population assignment test.
Figure 4: Eco-morphological assessment of Lake Apoyo's Amphilophus sp.

References

  1. 1

    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Higashi, M., Takimoto, G. & Yamamura, N. Sympatric speciation by sexual selection. Nature 402, 523–526 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kondrashov, A. S. & Kondrashov, F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature 400, 351–354 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gavrilets, S. Fitness Landscapes and the Origin of Species: Monographs in Population Biology vol. 41 (Princeton Univ. Press, Princeton, NJ, 2004)

    Google Scholar 

  5. 5

    Kawecki, T. J. in Adaptive Speciation (Dieckmann, Doebeli, Metz & Tautz, Cambridge Univ. Press, Cambridge, UK, 2004)

    Google Scholar 

  6. 6

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, MA, 2004)

    Google Scholar 

  7. 7

    Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (J. Murray, London, 1859)

    Book  Google Scholar 

  8. 8

    Schliewen, U., Tautz, D. & Pääbo, S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368, 629–632 (1994)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Weiblen, G. D. & Bush, G. L. Speciation in fig pollinators and parasites. Mol. Ecol. 11, 1573–1578 (2002)

    Article  Google Scholar 

  10. 10

    Gíslason, D., Ferguson, M. M., Skúlason, S. & Snorasson, S. S. Rapid and coupled phenotypic differentiation in Icelandic Arctic charr (Salvelinus alpinus). Can. J. Fish Aquat. Sci. 56, 2229–2234 (1999)

    Article  Google Scholar 

  11. 11

    Bice, D. Quaternary volcanic stratigraphy of Managua, Nicaragua: Correlation and source assignment for multiple overlapping plinian deposits. Geol. Soc. Am. Bull. 96, 553–566 (1985)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Barlow, G. W. in Investigations of the Ichthyofauna of Nicaraguan Lakes (ed. Thorson, T. B.) 333–358 (Univ. Nebraska Press, Nebraska, 1976)

    Google Scholar 

  13. 13

    Barlow, G. W. & Munsey, J. W. in Investigations of the Ichthyofauna of Nicaraguan Lakes (ed. Thorson, T. B.) 359–369 (Univ. Nebraska Press, Nebraska, 1976)

    Google Scholar 

  14. 14

    Klingenberg, C. P., Barluenga, M. & Meyer, A. Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol. J. Linn. Soc. 80, 397–408 (2003)

    Article  Google Scholar 

  15. 15

    Barluenga, M. & Meyer, A. The Midas Cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? Mol. Ecol. 13, 2061–2076 (2004)

    CAS  Article  Google Scholar 

  16. 16

    McKaye, K. R. et al. Behavioral, morphological and genetic evidence of divergence of the Midas cichlid species complex in two Nicaraguan crater lakes. Cuadernos de Investigación de la UCA 12, 19–47 (2002)

    Google Scholar 

  17. 17

    Baylis, J. R. A quantitative study of long-term courtship: I. Ethological isolation between sympatric populations of the midas cichlid, Cichlasoma citrinellum, and the arrow cichlid, C. zaliosum . Behaviour 59, 59–69 (1976)

    Article  Google Scholar 

  18. 18

    Meyer, A. Costs and benefits of morphological specialization: feeding performance in the trophically polymorphic Neotropical cichlid fish, Cichlasoma citrinellum . Oecologia 80, 431–436 (1989)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Schluter, D. & McPhail, J. D. Character displacement and replicate adaptive radiation. Trends Ecol. Evol. 8, 197–200 (1993)

    CAS  Article  Google Scholar 

  20. 20

    Fryer, G. & Iles, T. D. The Cichlid Fishes of the Great Lakes of Africa. Their Biology and Evolution (Oliver & Boyd, Edinburgh, 1972)

    Google Scholar 

  21. 21

    Kocher, T. D. Adaptive evolution and explosive speciation: the cichlid model. Nature Rev. Genet. 5, 288–298 (2004)

    CAS  Article  Google Scholar 

  22. 22

    van Oppen, M. J. H. et al. Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness for Lake Malawi. Mol. Ecol. 7, 991–1001 (1998)

    Article  Google Scholar 

  23. 23

    Seehausen, O. & van Alphen, J. J. M. Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecol. Lett. 2, 262–271 (1999)

    Article  Google Scholar 

  24. 24

    Schliewen, U. et al. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol. Ecol. 10, 1471–1488 (2001)

    CAS  Article  Google Scholar 

  25. 25

    Arnegard, M. E. & Kondrashov, A. S. Sympatric speciation by sexual selection alone is unlikely. Evolution 58, 222–237 (2004)

    Article  Google Scholar 

  26. 26

    Kirkpatrick, M. & Nuismer, S. L. Sexual selection can constrain sympatric speciation. Proc. R. Soc. Lond. B. 271, 687–693 (2004)

    Article  Google Scholar 

  27. 27

    Schoener, T. W. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 60, 703–710 (1970)

    Google Scholar 

  28. 28

    Levins, R. Evolution in Changing Environments. Some Theoretical Explorations (Princeton Univ. Press, Princeton, NJ, 1968)

    Google Scholar 

  29. 29

    Rohlf, F. J. TpsDig. (Dept. Ecology and Evolution, SUNY, New York, 2004)

  30. 30

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, art. 4 (2004)

Download references

Acknowledgements

We thank the Ministry of Natural Resources (MARENA) in Nicaragua for collection permits; Z. Pérez for support in the field; C. Chang-Rudolf, K. Hofmann, Y. Chiari and N. Feiner for technical assistance in the laboratory; and S. Gavrilets, T. Price and E. B. Taylor for comments on the manuscript. This work was funded by the Deutsche Forschungsgemeinschaft priority program 1127 (‘Adaptive radiations’).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Axel Meyer.

Ethics declarations

Competing interests

GenBank accession numbers for all mitochondrial control region sequences can be found in Supplementary Table 1. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

List of species, sample number, geographic origin for the Lake Apoyo fish, sampling localities, GenBank accession numbers of mitochondrial control region sequences, and haplotype numbers. Species Specimen ID Lake Locality Accesion No. Haplotype. (PDF 87 kb)

Supplementary Table 2

Mismatch analysis parameters. (PDF 2116 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barluenga, M., Stölting, K., Salzburger, W. et al. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006). https://doi.org/10.1038/nature04325

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing