Letter | Published:

A general strategy for nanocrystal synthesis


New strategies for materials fabrication are of fundamental importance in the advancement of science and technology1,2,3,4,5,6,7,8,9,10,11,12. Organometallic13,14 and other organic solution phase15,16,17 synthetic routes have enabled the synthesis of functional inorganic quantum dots or nanocrystals. These nanomaterials form the building blocks for new bottom-up approaches to materials assembly for a range of uses; such materials also receive attention because of their intrinsic size-dependent properties and resulting applications18,19,20,21. Here we report a unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity; these include noble metal, magnetic/dielectric, semiconducting, rare-earth fluorescent, biomedical, organic optoelectronic semiconducting and conducting polymer nanoparticles. This strategy is based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis. We believe our methodology provides a simple and convenient route to a variety of building blocks for assembling materials with novel structure and function in nanotechnology13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

  2. 2

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

  3. 3

    Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

  4. 4

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

  5. 5

    Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of Tungsten disulfide. Nature 360, 444–446 (1992)

  6. 6

    Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

  7. 7

    Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. & Lieber, C. M. Indium phosphide nanowire as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

  8. 8

    Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

  9. 9

    Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004)

  10. 10

    Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

  11. 11

    Huo, Q. S. et al. Generalized syntheses of periodic surfactant inorganic composite-materials. Nature 368, 317–321 (1994)

  12. 12

    Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)

  13. 13

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

  14. 14

    Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)

  15. 15

    Sun, S. H., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

  16. 16

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self organization of CdSe nanocrystallites into 3-dimentional quantum-dot superlattices. Science 270, 1335–1338 (1995)

  17. 17

    Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

  18. 18

    Jovin, T. M. Quantum dots finally come of age. Nature Biotechnol. 21, 32–33 (2003)

  19. 19

    Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

  20. 20

    Tessler, N., Medvedev, V., Kazes, M., Kan, S. H. & Banin, U. Efficient near-infrared polymer nanocrystat light-emitting diodes. Science 295, 1506–1508 (2002)

  21. 21

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)

  22. 22

    Li, Y. D. et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904–9905 (2001)

  23. 23

    Li, Y. D., Li, X. L., He, R. R., Zhu, J. & Deng, Z. X. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411–1416 (2002)

  24. 24

    Wang, X. & Li, Y. D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002)

  25. 25

    Wang, X. & Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edn Engl. 41, 4790–4793 (2002)

  26. 26

    Peng, Q., Dong, Y. J. & Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Edn Engl. 42, 3027–3030 (2003)

  27. 27

    Wang, X. & Li, Y. D. Fullerene-like rare-earth nanoparticles. Angew. Chem. Int. Edn Engl. 42, 3497–3500 (2003)

  28. 28

    Wang, X., Zhuang, J., Chen, J., Zhou, K. B. & Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem. Int. Edn Engl. 43, 2017–2020 (2004)

  29. 29

    Sun, X. M. & Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Edn Engl. 43, 3827–3831 (2004)

Download references


This work was supported by NSFC, the Foundation for the Author of National Excellent Doctoral Dissertation of China and the State Key Project of Fundamental Research for Nanomaterials and Nanostructures.

Author information

Correspondence to Yadong Li.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the following sections: Part I, particle size distributions analysis of the nanocrystals; Part II, EDS analysis of the nanocrystals; Part III, detailed experimental conditions for distinct class of nanocrystals with certain composition and sizes; Part IV, nanocrystals obtained by employing different solvents instead of ethanol; Part V, magnetic characterization of MFe2O4 nanocrystals, Uv-vis spectra of Ag nanocrystals with different sizes, Visible-to-naked-eyes green upconversion emissions from NaYF4 nanocrystals; Part VI, synthesis and characterization of New-type Nanocrystals. (DOC 3070 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: TEM images of nanocrystals.
Figure 2: XRD patterns of nanocrystals.
Figure 3
Figure 4: Cyclohexane solutions of nanoparticles with a typical concentration of 2%.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.