Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA


How DNA repair proteins distinguish between the rare sites of damage and the vast expanse of normal DNA is poorly understood. Recognizing the mutagenic lesion 8-oxoguanine (oxoG) represents an especially formidable challenge, because this oxidized nucleobase differs by only two atoms from its normal counterpart, guanine (G). Here we report the use of a covalent trapping strategy to capture a human oxoG repair protein, 8-oxoguanine DNA glycosylase I (hOGG1), in the act of interrogating normal DNA. The X-ray structure of the trapped complex features a target G nucleobase extruded from the DNA helix but denied insertion into the lesion recognition pocket of the enzyme. Free energy difference calculations show that both attractive and repulsive interactions have an important role in the preferential binding of oxoG compared with G to the active site. The structure reveals a remarkably effective gate-keeping strategy for lesion discrimination and suggests a mechanism for oxoG insertion into the hOGG1 active site.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of 8-oxoguanine (oxoG), its recognition by human 8-oxoguanine DNA glycosylase (hOGG1) and overview of the structure-based trapping strategy used here to obtain a complex of hOGG1 bound to undamaged DNA.
Figure 2: Comparison of the overall structures of trapped complexes obtained with oxoG-containing (left) or G-containing (right) DNA.
Figure 3: View of the active site region of hOGG1–DNA complexes, showing extra-helical nucleobases bound to either the lesion recognition pocket or the alternative site.
Figure 4: Computational analysis of the binding free energy difference between oxoG and G.
Figure 5: Superposition of the oxoG complex with the G complex in the region around the protein–DNA interface.


  1. 1

    Michaels, M. L. & Miller, J. H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174, 6321–6325 (1992)

    CAS  Article  Google Scholar 

  2. 2

    Grollman, A. P. & Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246–249 (1993)

    CAS  Article  Google Scholar 

  3. 3

    Cappelli, E. et al. Rates of base excision repair are not solely dependent on levels of initiating enzymes. Carcinogenesis 22, 387–393 (2001)

    CAS  Article  Google Scholar 

  4. 4

    Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Fromme, J. C., Bruner, S. D., Yang, W., Karplus, M. & Verdine, G. L. Product-assisted catalysis in base-excision DNA repair. Nature Struct. Biol. 10, 204–211 (2003)

    CAS  Article  Google Scholar 

  6. 6

    Norman, D. P., Chung, S. J. & Verdine, G. L. Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry 42, 1564–1572 (2003)

    CAS  Article  Google Scholar 

  7. 7

    Norman, D. P. G., Bruner, S. D. & Verdine, G. L. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 123, 359–360 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Viadiu, H. & Aggarwal, A. K. Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol. Cell 5, 889–895 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Robinson, H. et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392, 202–205 (1998)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Gao, Y. G. et al. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nature Struct. Biol. 5, 782–786 (1998)

    CAS  Article  Google Scholar 

  12. 12

    Huang, H., Harrison, S. C. & Verdine, G. L. Trapping of a catalytic HIV reverse transcriptase•template:primer complex through a disulfide bond. Chem. Biol. 7, 355–364 (2000)

    CAS  Article  Google Scholar 

  13. 13

    Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Verdine, G. L. & Norman, D. P. Covalent trapping of protein-DNA complexes. Annu. Rev. Biochem. 72, 337–366 (2003)

    CAS  Article  Google Scholar 

  15. 15

    Fromme, J. C., Banerjee, A., Huang, S. J. & Verdine, G. L. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427, 652–656 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Simonson, T., Archontis, G. & Karplus, M. Free energy simulations come of age: protein-ligand recognition. Acc. Chem. Res. 35, 430–437 (2002)

    CAS  Article  Google Scholar 

  17. 17

    Yang, W., Bitetti-Putzer, R. & Karplus, M. Chaperoned alchemical free energy simulations: A general method for QM, MM, and QM/MM potentials. J. Chem. Phys. 120, 9450–9453 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Brooks, C. L. III, Karplus, M. & Pettitt, B. M. Advances in Chemical Physics Vol. 71 (Wiley & Sons, New York, 1988)

    Google Scholar 

  19. 19

    Verdine, G. L. & Bruner, S. D. How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329–334 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Bjoras, M., Seeberg, E., Luna, L., Pearl, L. H. & Barrett, T. E. Reciprocal “flipping” underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J. Mol. Biol. 317, 171–177 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Berdal, K. G., Johansen, R. F. & Seeberg, E. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J. 17, 363–367 (1998)

    CAS  Article  Google Scholar 

  22. 22

    O'Brien, P. J. & Ellenberger, T. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J. Biol. Chem. 279, 26876–26884 (2004)

    CAS  Article  Google Scholar 

  23. 23

    MacMillan, A. M. & Verdine, G. L. Engineering tethered DNA molecules by the convertible nucleoside approach. Tetrahedron 47, 2603–2616 (1991)

    CAS  Article  Google Scholar 

  24. 24

    Carson, M. J. Ribbons 2.0. J. Appl. Crystallogr. 24, 379–384 (1991)

    Article  Google Scholar 

  25. 25

    Schaefer, M., Sommer, M. & Karplus, M. pH-dependence of protein stability: absolute electrostatic free energy differences between conformations. J. Phys. Chem. B 101, 1663–1683 (1997)

    CAS  Article  Google Scholar 

  26. 26

    Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T. & Karplus, M. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J. Phys. Chem. B 105, 569–585 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Dinner, A. R., Blackburn, G. M. & Karplus, M. Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413, 752–755 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    MacKerell, A. D. Jr et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    CAS  Article  Google Scholar 

  29. 29

    Simonson, T., Archontis, G. & Karplus, M. Continuum treatment of long-range interactions in free energy calculations. Application to protein-ligand binding. J. Phys. Chem. B 101, 8347–8360 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Bash, P. A. et al. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 30, 5826–5832 (1991)

    CAS  Article  Google Scholar 

  31. 31

    Cervi, A. R., Guy, A., Leonard, G. A., Teoule, R. & Hunter, W. N. The crystal structure of N4-methylcytosine.guanosine base-pairs in the synthetic hexanucleotide d(CGCGm4CG). Nucleic Acids Res. 21, 5623–5629 (1993)

    CAS  Article  Google Scholar 

Download references


We are grateful to Y. Korkhin for help in data collection and processing. We thank Enanta Pharmaceuticals for use of their X-ray instrumentation. We acknowledge the entire staff at MACCHESS, especially C. Heaton and B. Miller, and NSLS X4A for assistance in data collection and processing. We thank D. Jeruzalmi and C. Fromme for valuable discussions. This work was supported by grants from the NIH to G.L.V. and M.K.Author contributions A.B. was responsible for performing the structural and biochemical experiments described herein, whereas W.Y. performed the computational simulations.

Author information



Corresponding authors

Correspondence to Martin Karplus or Gregory L. Verdine.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

Data collection and model statistics. (DOC 54 kb)

Supplementary Figure Legends

Figure captions for Supplementary Figures S1-S4. (DOC 35 kb)

Supplementary Methods

Additional details on computational methods and data collection and structure solution. (DOC 56 kb)

Supplementary Figure S1

Structural validation of the trapping strategy and crosslinking biochemistry. (PDF 658 kb)

Supplementary Figure S2

Electron density map around the G in the exo- site and the crosslinked C in the G-complex. (JPG 550 kb)

Supplementary Figure S3

Structural representations of the carbonyl of Gly42 and different nucleobases used in this study. (JPG 149 kb)

Supplementary Figure S4

Electron density maps around the analogs in the crosslinked complexes. (JPG 767 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banerjee, A., Yang, W., Karplus, M. et al. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434, 612–618 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.