Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4

Abstract

Materials in which magnetic and electric order coexist—termed ‘multiferroics’ or ‘magnetoelectrics’—have recently become the focus of much research1,2,3,4. In particular, the simultaneous occurrence of ferromagnetism and ferroelectricity, combined with an intimate coupling of magnetization and polarization via magnetocapacitive effects, holds promise for new generations of electronic devices. Here we present measurements on a simple cubic spinel compound with unusual, and potentially useful, magnetic and electric properties: it shows ferromagnetic order coexisting with relaxor ferroelectricity (a ferroelectric cluster state with a smeared-out phase transition), both having sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature, the magnetocapacitive coupling (characterized by a variation of the dielectric constant in an external magnetic field) reaches colossal values, approaching 500 per cent. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments but here is found to impede long-range order of the structural degrees of freedom that drive the formation of the ferroelectric state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Magnetic and dielectric characterization of CdCr2S4.
Figure 2: Magnetocapacitive behaviour of CdCr2S4.
Figure 3: Thermo-remanent polarization versus temperature.

References

  1. 1

    Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Goto, T., Kimura, T., Lawes, G., Ramirez, A. P. & Tokura, Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hur, N. et al. Electric polarization in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Chem. Phys. B 104, 6694–6709 (2000)

    CAS  Article  Google Scholar 

  6. 6

    Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1983)

    ADS  Article  Google Scholar 

  7. 7

    Verwey, J. E. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature. Nature 144, 327–328 (1939)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Fritsch, V. et al. Spin and orbital frustration in MnSc2S4 and FeSc2S4 . Phys. Rev. Lett. 92, 116401 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Fichtl, R., Tsurkan, V., Lunkenheimer, P., Hemberger, J., Fritsch, V., Krug von Nidda, H.-A., Scheidt, E.-W. & Loidl, A. Orbital freezing and orbital glass state in FeCr2S4 . Phys. Rev. Lett. 94, 027601 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Baltzer, P. K., Lehmann, H. W. & Robbins, M. Insulating ferromagnetic spinels. Phys. Rev. Lett. 15, 493–495 (1965)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Göbel, H. Local lattice distortions in chromium chalcogenide spinels at low temperatures. J. Magn. Magn. Mater. 3, 143–146 (1976)

    ADS  Article  Google Scholar 

  12. 12

    Martin, G. W., Kellog, A. T., White, R. L. & White, R. M. Exchangestriction in CdCr2S4 and CdCr2Se4 . J. Appl. Phys. 40, 1015–1016 (1969)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Harbeke, G. & Pinch, H. Magnetoabsorption in single-crystal semiconducting ferromagnetic spinels. Phys. Rev. Lett. 17, 1090–1092 (1966)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Wakamura, K. & Arai, T. Effect of magnetic ordering on phonon parameters for infrared active modes in ferromagnetic spinel CdCr2S4 . J. Appl. Phys. 63, 5824–5829 (1988)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lehmann, H. W. & Robbins, M. Electrical transport properties of the insulating ferromagnetic spinels CdCr2S4 and CdCr2Se4 . J. Appl. Phys. 37, 1389–1390 (1966)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Samara, G. A. The relaxation properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    CAS  Article  Google Scholar 

  18. 18

    Kamba, S. et al. Dielectric dispersion of relaxor PLZT ceramics in the frequency range 20 Hz-100 THz. J. Phys. Condens. Matter 12, 497–519 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Lunkenheimer, P. et al. Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002)

    ADS  Article  Google Scholar 

  20. 20

    Austin, I. G. & Mott, N. F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–103 (1969)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Callen, E. Optical absorption edge of magnetic semiconductors. Phys. Rev. Lett. 20, 1045–1048 (1968)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Grimes, N. W. Off-centre ions in compounds with spinel structure. Phil. Mag. 26, 1217–1226 (1972)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ramirez, A. P. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. H. J.) 423–520 (Elsevier, Amsterdam, 2001)

    Google Scholar 

  24. 24

    Ramirez, A. P. Magic moments. Nature 421, 483 (2003)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Mary, T., Evans, J. S. O., Vogt, T. & Sleight, A. W. Negative thermal expansion from 0.3 to 1050 K in ZrW2O8 . Science 272, 90–92 (1996)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Cao, D., Bridges, F., Kowach, G. R. & Ramirez, A. P. Frustrated soft modes and negative thermal expansion in ZrW2O8 . Phys. Rev. Lett. 89, 215902 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Knorr, K. & Loidl, A. Anomalous diffraction profiles of alkali-halide-alkali-cyanide mixed crystals. Phys. Rev. Lett. 57, 460–462 (1986)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Höchli, U. T., Knorr, K. & Loidl, A. Orientational glasses. Adv. Phys. 39, 405–615 (1990)

    ADS  Article  Google Scholar 

  29. 29

    Lunkenheimer, P., Schneider, U., Brand, R. & Loidl, A. Glassy dynamics. Contemp. Phys. 41, 15–36 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 484 and partly by the BMBF via VDI/EKM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Lunkenheimer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hemberger, J., Lunkenheimer, P., Fichtl, R. et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005). https://doi.org/10.1038/nature03348

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.