Letter | Published:

Quantized conductance atomic switch

Abstract

A large variety of nanometre-scale devices have been investigated in recent years1,2,3,4,5,6,7 that could overcome the physical and economic limitations of current semiconductor devices8. To be of technological interest, the energy consumption and fabrication cost of these ‘nanodevices’ need to be low. Here we report a new type of nanodevice, a quantized conductance atomic switch (QCAS), which satisfies these requirements. The QCAS works by controlling the formation and annihilation of an atomic bridge at the crossing point between two electrodes. The wires are spaced approximately 1 nm apart, and one of the two is a solid electrolyte wire from which the atomic bridges are formed. We demonstrate that such a QCAS can switch between ‘on’ and ‘off’ states at room temperature and in air at a frequency of 1 MHz and at a small operating voltage (600 mV). Basic logic circuits are also easily fabricated by crossing solid electrolyte wires with metal electrodes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

  2. 2

    Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

  3. 3

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

  4. 4

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

  5. 5

    Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

  6. 6

    Mathur, N. Beyond the silicon roadmap. Nature 419, 573–575 (2002)

  7. 7

    Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003)

  8. 8

    Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000)

  9. 9

    Slater, R. Portraits in Silicon Ch. 3 & 13 (MIT Press, Cambridge, Massachusetts, 1989)

  10. 10

    Kudo, T. & Fueki, K. Solid State Ionics 137–140 (Kodansha/VCH, Tokyo, 1990)

  11. 11

    Terabe, K., Nakayama, T., Iyi, N. & Aono, M. in Proc. 9th Int. Conf. on Production Engineering (eds Furukawa, Y., Mori, Y. & Kataoka, T.) 711–716 (The Japan Society for Precision Engineering, Osaka, 1999)

  12. 12

    Terabe, K., Nakayama, T., Hasegawa, T. & Aono, M. Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110–10114 (2002)

  13. 13

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantum point contact switch realized by solid electrochemical reaction. Riken Rev. 37, 7–8 (2001)

  14. 14

    Chen, Y. et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003)

  15. 15

    Ohashi, K. & Ohashi, Y. H. Non-linear electrical transport in silver sulfide. Solid State Ionics 3/4, 127–130 (1981)

  16. 16

    Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993)

  17. 17

    Olesen, L. et al. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994)

  18. 18

    Costa-Kramer, J. L. et al. Conductance quantization in nanowires formed between micro- and macroscopic metallic electrodes. Phys. Rev. B 55, 5416–5424 (1997)

  19. 19

    Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–785 (1998)

  20. 20

    Krans, J. M., Van Ruitenbeek, J. M., Fisun, V. V., Yansen, I. K. & de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995)

  21. 21

    Hansen, K., Læsgaard, E., Stensgaard, I. & Besenbacher, F. Quantized conductance in relays. Phys. Rev. B 56, 2208–2220 (1997)

  22. 22

    Agrait, N., Yeyati, A. L. & Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377 (2–3), 81–279 (2003)

  23. 23

    Enomoto, A., Kurokawa, S. & Sakai, A. Quantized conductance in Au-Pd and Au-Ag alloy nanocontacts. Phys. Rev. B 65, 125410 (2002)

  24. 24

    Rodrigues, V., Bettini, J., Rocha, A. R., Rego, L. G. C. & Ugarte, D. Quantum conductance in silver nanowires: correlation between atomic structure and transport properties. Phys. Rev. B 65, 153402 (2002)

  25. 25

    Smith, D. P. E. Quantum point contact switches. Science 269, 371–373 (1995)

  26. 26

    Li, C. Z. & Tao, N. J. Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 72, 894–896 (1998)

  27. 27

    Xu, B., He, H. & Tao, N. J. Controlling the conductance of atomically thin metal wires with electrochemical potential. J. Am. Chem. Soc. 124, 13568–13575 (2002)

  28. 28

    Oshima, Y., Mouri, K., Hirayama, H. & Takayanagi, K. Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV-TEM. Surf. Sci. 531, 209–216 (2003)

  29. 29

    Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)

Download references

Acknowledgements

We thank M. Kundu and R. Negishi for fabrication of the crossbar-type switches, and T. Tamura for help with measurement of the switching time.

Author information

Correspondence to T. Hasegawa.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Basics of the QCAS.
Figure 2: Switching results of the QCAS.
Figure 3: Logic gates configured with QCASs.
Figure 4: 1 × 2 array of QCASs.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.