Quantized conductance atomic switch


A large variety of nanometre-scale devices have been investigated in recent years1,2,3,4,5,6,7 that could overcome the physical and economic limitations of current semiconductor devices8. To be of technological interest, the energy consumption and fabrication cost of these ‘nanodevices’ need to be low. Here we report a new type of nanodevice, a quantized conductance atomic switch (QCAS), which satisfies these requirements. The QCAS works by controlling the formation and annihilation of an atomic bridge at the crossing point between two electrodes. The wires are spaced approximately 1 nm apart, and one of the two is a solid electrolyte wire from which the atomic bridges are formed. We demonstrate that such a QCAS can switch between ‘on’ and ‘off’ states at room temperature and in air at a frequency of 1 MHz and at a small operating voltage (600 mV). Basic logic circuits are also easily fabricated by crossing solid electrolyte wires with metal electrodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Basics of the QCAS.
Figure 2: Switching results of the QCAS.
Figure 3: Logic gates configured with QCASs.
Figure 4: 1 × 2 array of QCASs.


  1. 1

    Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    CAS  Article  Google Scholar 

  4. 4

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Mathur, N. Beyond the silicon roadmap. Nature 419, 573–575 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000)

    CAS  Article  Google Scholar 

  9. 9

    Slater, R. Portraits in Silicon Ch. 3 & 13 (MIT Press, Cambridge, Massachusetts, 1989)

    Google Scholar 

  10. 10

    Kudo, T. & Fueki, K. Solid State Ionics 137–140 (Kodansha/VCH, Tokyo, 1990)

    Google Scholar 

  11. 11

    Terabe, K., Nakayama, T., Iyi, N. & Aono, M. in Proc. 9th Int. Conf. on Production Engineering (eds Furukawa, Y., Mori, Y. & Kataoka, T.) 711–716 (The Japan Society for Precision Engineering, Osaka, 1999)

    Google Scholar 

  12. 12

    Terabe, K., Nakayama, T., Hasegawa, T. & Aono, M. Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110–10114 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantum point contact switch realized by solid electrochemical reaction. Riken Rev. 37, 7–8 (2001)

    CAS  Google Scholar 

  14. 14

    Chen, Y. et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Ohashi, K. & Ohashi, Y. H. Non-linear electrical transport in silver sulfide. Solid State Ionics 3/4, 127–130 (1981)

    Article  Google Scholar 

  16. 16

    Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Olesen, L. et al. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Costa-Kramer, J. L. et al. Conductance quantization in nanowires formed between micro- and macroscopic metallic electrodes. Phys. Rev. B 55, 5416–5424 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–785 (1998)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Krans, J. M., Van Ruitenbeek, J. M., Fisun, V. V., Yansen, I. K. & de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hansen, K., Læsgaard, E., Stensgaard, I. & Besenbacher, F. Quantized conductance in relays. Phys. Rev. B 56, 2208–2220 (1997)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Agrait, N., Yeyati, A. L. & Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377 (2–3), 81–279 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Enomoto, A., Kurokawa, S. & Sakai, A. Quantized conductance in Au-Pd and Au-Ag alloy nanocontacts. Phys. Rev. B 65, 125410 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Rodrigues, V., Bettini, J., Rocha, A. R., Rego, L. G. C. & Ugarte, D. Quantum conductance in silver nanowires: correlation between atomic structure and transport properties. Phys. Rev. B 65, 153402 (2002)

    ADS  Article  Google Scholar 

  25. 25

    Smith, D. P. E. Quantum point contact switches. Science 269, 371–373 (1995)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Li, C. Z. & Tao, N. J. Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 72, 894–896 (1998)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Xu, B., He, H. & Tao, N. J. Controlling the conductance of atomically thin metal wires with electrochemical potential. J. Am. Chem. Soc. 124, 13568–13575 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Oshima, Y., Mouri, K., Hirayama, H. & Takayanagi, K. Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV-TEM. Surf. Sci. 531, 209–216 (2003)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)

    CAS  Article  Google Scholar 

Download references


We thank M. Kundu and R. Negishi for fabrication of the crossbar-type switches, and T. Tamura for help with measurement of the switching time.

Author information



Corresponding author

Correspondence to T. Hasegawa.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Terabe, K., Hasegawa, T., Nakayama, T. et al. Quantized conductance atomic switch. Nature 433, 47–50 (2005). https://doi.org/10.1038/nature03190

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.