Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extreme winds and waves in the aftermath of a Neoproterozoic glaciation

Abstract

The most severe excursions in the Earth's climatic history are thought to be associated with Proterozoic glaciations. According to the ‘Snowball Earth’ hypothesis, the Marinoan glaciation, which ended about 635 million years ago, involved global or nearly global ice cover. At the termination of this glacial period, rapid melting of continental ice sheets must have caused a large rise in sea level. Here we show that sediments deposited during this sea level rise contain remarkable structures that we interpret as giant wave ripples. These structures occur at homologous stratigraphic levels in Australia, Brazil, Canada, Namibia and Svalbard. Our hydrodynamic analysis of these structures suggests maximum wave periods of 21 to 30 seconds, significantly longer than those typical for today's oceans. The reconstructed wave conditions could only have been generated under sustained high wind velocities exceeding 20 metres per second in fetch-unlimited ocean basins. We propose that these extraordinary wind and wave conditions were characteristic of the climatic transit, and provide observational targets for atmospheric circulation models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sequence of sedimentary structures and lithologies in representative Marinoan postglacial cap carbonate sections.
Figure 2: Geometrical features and lamination styles of giant wave ripples in Marinoan post-glacial cap dolostones.
Figure 3: Cross-sectional view of an aggrading (climbing) wave ripple from the Keilberg cap carbonate of the Otavi Platform, northern Namibia.
Figure 4: Relation between wind speed, wave period and energy distribution.

References

  1. Fanning, C. M. & Link, P. U-Pb SHRIMP ages for Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 32, 881–884 (2004)

    ADS  CAS  Article  Google Scholar 

  2. Hoffmann, K.-H., Condon, D. J., Bowring, S. A. & Crowley, J. L. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 32, 817–820 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000)

    ADS  Article  Google Scholar 

  4. Kennedy, M. J. Stratigraphy, sedimentology, and isotope geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. J. Sedim. Res. 66, 1050–1064 (1996)

    CAS  Article  Google Scholar 

  5. James, N. P., Narbonne, G. M. & Kyser, T. K. Late Neoproterozoic cap carbonates, Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Can. J. Earth Sci. 38, 1229–1262 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Higgins, J. A. & Schrag, D. P. Aftermath of a snowball Earth. Geochem. Geophys. Geosyst. 4(3), 1028, doi:10.1029/2002GC000403 (2003)

    ADS  Article  Google Scholar 

  8. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Xiao, S. et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambr. Res. 130, 1–26 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Cloud, P. E. Jr, Wright, L. A., Williams, E. G., Diehl, P. & Walter, M. R. Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geol. Soc. Am. Bull. 85, 1869–1882 (1974)

    ADS  CAS  Article  Google Scholar 

  11. Hegenberger, W. Gas escape structures in Precambrian peritidal carbonate rocks. Commun. Geol. Surv. S.W. Africa/Namibia 3, 49–55 (1987)

    Google Scholar 

  12. Kennedy, M. J., Christie-Blick, N. & Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001)

    ADS  CAS  Article  Google Scholar 

  13. Hoffman, P. F., Halverson, G. P. & Grotzinger, J. P. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Comment and Reply. Geology 30, 286–288 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Peryt, T. M. et al. Late Proterozoic aragonitic cement crusts, Bambuí Group, Minas Gerais, Brazil. Sedimentology 37, 279–286 (1990)

    ADS  Article  Google Scholar 

  15. Aitken, J. D. The Ice Brook Formation and Post-Rapitan, Late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories. Geol. Surv. Can. Bull. 404, 1–43 (1991)

    Google Scholar 

  16. Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995)

    ADS  CAS  Article  Google Scholar 

  17. Porter, S. M., Knoll, A. H. & Affaton, P. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambr. Res. 130, 99–112 (2004)

    ADS  CAS  Article  Google Scholar 

  18. Nogueira, A. C. R., Riccomini, C., Sial, A. N., Moura, C. A. V. & Fairchild, T. R. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31, 613–616 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Kendall, C. G. St C. & Warren, J. A review of the origin and setting of tepees and their associated fabrics. Sedimentology 34, 1007–1028 (1987)

    ADS  Article  Google Scholar 

  20. De Raaf, J. F. M., Boersma, J. R. & van Gelder, A. Wave generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 4, 1–52 (1977)

    Article  Google Scholar 

  21. Giménez-Curto, L. A. & Corniero, M. A. Flow characteristics in the interfacial shear layer between a fluid and a granular bed. J. Geophys. Res. 107(C5), doi:10.1029/2000JC000729 (2002)

  22. Giménez-Curto, L. A. & Corniero, M. A. Highest natural bed forms. J. Geophys. Res. 108(C2), doi:10.1029/2002JC001474 (2003)

  23. Giménez-Curto, L. A. & Corniero Lera, M. A. Oscillating turbulent flow over very rough surfaces. J. Geophys. Res. 101(C9), 20745–20758 (1996)

    ADS  Article  Google Scholar 

  24. Miller, M. C. & Komar, P. D. Oscillation sand ripples generated by laboratory apparatus. J. Sedim. Petrol. 50, 173–182 (1980)

    Article  Google Scholar 

  25. Bagnold, R. A. Motion of waves in shallow water. Interactions between waves and sand bottoms. Proc. R. Soc. Lond. A 187, 1–15 (1946)

    ADS  Article  Google Scholar 

  26. Sleath, J. F. A. On rolling grain ripples. J. Hydraul. Res. 14, 69–80 (1976)

    Article  Google Scholar 

  27. Clifton, H. E. in Beach and Nearshore Sedimentation (eds Davies, R. A. & Ethington, R. L.) 126–148 (Spec. Publ. 24, Soc. Econ. Mineral. Petrol., Tulsa, Oklahoma, 1976)

    Book  Google Scholar 

  28. Miller, M. C. & Komar, P. D. A field investigation of the relationship between oscillation ripple spacing and near-bottom orbital motions. J. Sedim. Petrol. 50, 183–190 (1980)

    Article  Google Scholar 

  29. Harms, J. C. Hydraulic significance of some sand ripples. Geol. Soc. Am. Bull. 80, 363–396 (1969)

    ADS  Article  Google Scholar 

  30. Tanner, W. F. Numerical estimates of ancient waves, water depth and fetch. Sedimentology 16, 71–88 (1971)

    ADS  Article  Google Scholar 

  31. Komar, P. D. Oscillatory ripple marks and the evaluation of ancient wave conditions and environments. J. Sedim. Petrol. 44, 169–180 (1974)

    Google Scholar 

  32. Allen, P. A. Wave-generated structures in the Devonian lacustrine sediments of SE Shetland, and ancient wave conditions. Sedimentology 28, 369–379 (1981)

    ADS  Article  Google Scholar 

  33. Allen, P. A. Some guidelines in reconstructing ancient sea conditions from wave ripple marks. Mar. Geol. 43, M59–M67 (1981)

    Article  Google Scholar 

  34. Allen, P. A. Reconstruction of ancient sea conditions with an example from the Swiss Molasse. Mar. Geol. 60, 455–473 (1984)

    ADS  Article  Google Scholar 

  35. Komar, P. D. & Miller, M. C. The threshold of sediment motion under oscillatory water waves. J. Sedim. Petrol. 43, 1101–1110 (1973)

    Article  Google Scholar 

  36. Wiegel, R. L. Oceanographical Engineering (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)

    Google Scholar 

  37. Eckart, C. Gravity Waves 165–173 (Circular 521, US National Bureau of Standards, 1952)

    Google Scholar 

  38. Miche, R. Undulatory movements of the sea in constant and decreasing depth. Annales Ponts Chaussée May-June, July-August, 25–78, 131–164, 270–292, 369–406 (1944).

  39. McCowan, J. On the highest wave of permanent type. Phil. Mag. 5, 351–357 (1894)

    Article  Google Scholar 

  40. Pierson, W. J., Neumann, G. & James, R. W. Practical Methods for Observing and Forecasting Ocean Waves (Publ. 603, US Naval Oceanographic Office, Washington DC, 1955)

    Google Scholar 

  41. Coastal Engineering Research Center. Shore Protection Manual Vols 1–3 (US Army Corps of Engineers, Washington DC, 1973)

    Google Scholar 

  42. Halverson, G. P., Maloof, A. C. & Hoffman, P. F. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res. 16, 297–324 (2004)

    ADS  Article  Google Scholar 

  43. Hoffman, P. F. Carbonates bounding glacial deposits: Evidence for Snowball Earth episodes and greenhouse aftermaths in the Neoproterozoic Otavi Group of northern Namibia. In Excursion Guide, 16th Int. Sedimentological Conf. (International Association of Sedimentologists, 2002)

    Google Scholar 

  44. Fölling, P. G. & Frimmel, H. E. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Res. 14, 69–88 (2002)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

P.F.H. thanks the Arctic Natural Science and Earth System History Programs (NSF), the Astrobiology Institute (NASA) and the Earth System Evolution Program (CIAR) for supporting this work. We thank A. Bush, H. Daigle, C. Ferguson, W. Fischer, P. Halverson, A. Maloof, P. Myrow and S. Turchyn for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Allen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allen, P., Hoffman, P. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433, 123–127 (2005). https://doi.org/10.1038/nature03176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing