Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wind-wave climate changes and their impacts

An Author Correction to this article was published on 24 January 2024

This article has been updated

Abstract

Wind-waves have an important role in Earth system dynamics through air–sea interactions and are key drivers of coastal and offshore hydro-morphodynamics that affect communities, ecosystems, infrastructure and operations. In this Review, we outline historical and projected changes in the wind-wave climate over the world’s oceans, and their impacts. Historical trend analysis is challenging owing to the presence of temporal inhomogeneities from increased numbers and types of assimilated data. Nevertheless, there is general agreement over a consistent historical increase in mean wave height of 1–3 cm yr−1 in the Southern and Arctic Oceans, with extremes increasing by >10 cm yr−1 for the latter. By 2100, mean wave height is projected to rise by 5–10% in the Southern Ocean and eastern tropical South Pacific, and by >100% in the Arctic Ocean. By contrast, reductions in mean wave height up to 10% are expected in the North Atlantic and North Pacific, with regional variability and uncertainty for changes in extremes. Differences between 1.5 °C and warmer worlds reveal the potential benefit of limiting anthropogenic warming. Resolving global-scale climate change impacts on coastal processes and atmospheric–ocean–wave interactions requires a step-up in observational and modeling capabilities, including enhanced spatiotemporal resolution and coverage of observations, more homogeneous data products, multidisciplinary model improvement, and better sampling of uncertainty with larger ensembles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial coverage and temporal evolution of significant wave height (Hs) observations.
Fig. 2: Historical Hs trends and discrepancies across data products.
Fig. 3: Historical climatology and variability of wind-waves.
Fig. 4: Climate mode influences on Hs.
Fig. 5: Projected changes in Hs.

Similar content being viewed by others

Change history

References

  1. Weisse, R. & von Storch, H. Marine Climate and Climate Change. Storms, Winds, Waves and Storm Surges (Praxis Publishing, 2010).

  2. Holthuijsen, L. Waves in Oceanic and Coastal Waters (Cambridge University Press, 2007).

  3. Thomson, J. & Rogers, W. E. Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 41, 3136–3140 (2014).

    Article  Google Scholar 

  4. Ponce de León, S. & Guedes Soares, C. Extreme waves in the Agulhas Current Region inferred from SAR wave spectra and the SWAN model. J. Mar. Sci. Eng. 153, 153 (2021).

    Article  Google Scholar 

  5. Malito, J., Eidam, E. & Nienhuis, J. Increasing wave energy moves arctic continental shelves toward a new future. J. Geophys. Res. Oceans 127, e2021JC018374 (2022).

    Article  Google Scholar 

  6. Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475–491 (2010).

    Article  Google Scholar 

  7. Barnard, P. L. et al. Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño. Nat. Commun. 8, 1–8 (2017).

    Article  Google Scholar 

  8. Shaw, T. et al. Stormier southern hemisphere induced by topography and ocean circulation. Proc. Natl Acad. Sci. USA 119, e2123512119 (2022).

    Article  Google Scholar 

  9. Young, I. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 80, 548–552 (2019).

    Article  Google Scholar 

  10. Hemer, M., Wang, X., Weisse, R. & Swail, V. Advancing wind-waves climate science: the cowclip project. Bull. Am. Meteorol. Soc. 93, 791–796 (2012).

    Article  Google Scholar 

  11. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Miller, H. L. et al.) (Cambridge Univ. Press, 2007).

  12. IPCC. Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)] (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2021).

  13. Almar, R. et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 14, 3133 (2023).

    Article  Google Scholar 

  14. Harley, M. D. et al. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Nat. Sci. Rep. 7, 6033 (2017).

    Google Scholar 

  15. Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. J. Geophys. Res. Earth Surf. 126, e2019JF005506 (2021).

    Article  Google Scholar 

  16. Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12, 3775 (2021).

    Article  Google Scholar 

  17. Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Nat. Sci. Rep. 7, 1399 (2017).

    Google Scholar 

  18. Bugnot, A. et al. Current and projected global extent of marine built structures. Nat. Sustain. 4, 33–41 (2019).

    Article  Google Scholar 

  19. Sierra, J. & Casas-Prat, M. Analysis of potential impacts on coastal areas due to changes in wave conditions. Surv. Geophys. 124, 861–879 (2014).

    Google Scholar 

  20. Heij, C. & Knapp, S. Effects of wind strength and wave height on ship incident risk: regional trends and seasonality. Transp. Res. D: Transp. Environ. 37, 29–39 (2015).

    Article  Google Scholar 

  21. Grifoll, M., Martínez de Osés, F. & Castells, M. Potential economic benefits of using a weather ship routing system at short sea shipping. WMU J. Marit. Aff. 17, 195–211 (2018).

    Article  Google Scholar 

  22. Chust, GE. Climate regime shifts and biodiversity redistribution in the bay of biscay. Sci. Total Environ. 803, 149622 (2022).

    Article  Google Scholar 

  23. Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125(8), e2020JC016078 (2020).

    Article  Google Scholar 

  24. Storlazzi, C. et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 4, eaap9741 (2018).

    Article  Google Scholar 

  25. Cavaleri, L., Fox-Kemper, B. & Hemer, M. Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 93, 1651–1661 (2012).

    Article  Google Scholar 

  26. Zou, Z. et al. Effects of swell waves on atmospheric boundary layer turbulence: a low wind field study. J. Geophys. Res. Oceans 124, 5671–5685 (2019).

    Article  Google Scholar 

  27. Kamranzad, B., Amarouche, K. & Akpinar, A. Linking the long-term variability in global wave energy to swell climate and redefining suitable coasts for energy exploitation. Nat. Sci. Rep. 12, 14692 (2022).

    Google Scholar 

  28. Galluta, D., Tahmasbi Fard, M., Gutierrez Soto, M. & He, J. Recent advances in wave energy conversion systems: from wave theory to devices and control strategies. Ocean Eng. 252, 111105 (2022).

    Article  Google Scholar 

  29. Spyros, F. Wave energy converters in low energy seas: current state and opportunities. Renew. Sust. Energ. Rev. 162, 112448 (2022).

    Article  Google Scholar 

  30. Cisneros-Montemayor, A. M. et al. Enabling conditions for an equitable and sustainable blue economy. Nature 591, 396–401 (2021).

    Article  Google Scholar 

  31. Wenhai, L. et al. Successful blue economy examples with an emphasis on international perspectives. Front. Mar. Sci. 6, 261 (2019).

    Article  Google Scholar 

  32. Gulev, S. & Grigorieva, V. Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett. 31, 1–4 (2004).

    Article  Google Scholar 

  33. Ardhuin, A., Chapron, B. & Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. https://doi.org/10.1029/2008GL037030 (2009).

  34. Hauser, D. et al. New observations from the SWIM radar on-board CFOSAT: instrument validation and ocean wave measurement assessment. IEEE Trans. Geosci. Remote Sens. 59, 5–26 (2021).

    Article  Google Scholar 

  35. Dodet, G., Piolle, J.-F. & Quilfen, Y. et al. The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 12, 1929–1951 (2020).

    Article  Google Scholar 

  36. Timmermans, B. W., Gommenginger, C. P., Dodet, G. & Bidlot, J.-R. Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys. Res. Lett. 47, e2019GL086880 (2020).

    Article  Google Scholar 

  37. Echevarria, E. R., Hemer, M. A., Holbrook, N. J. & Marshall, A. G. Influence of the Pacific-South American modes on the global spectral wind-wave climate. J. Geophys. Res. Oceans 125, e2020JC016354 (2020).

    Article  Google Scholar 

  38. Gemmrich, J., Thomas, B. & Bouchard, R. Observational changes and trends in northeast Pacific wave records. Geophys. Res. Lett. 38, 22601 (2011).

    Article  Google Scholar 

  39. Young, Y. & Ribal, A. Can multi-mission altimeter datasets accurately measure long-term trends in wave height? Remote Sens. 14, 974 (2022).

    Article  Google Scholar 

  40. Jiang, H. Evaluation of altimeter undersampling in estimating global wind and wave climate using virtual observation. Remote Sens. Environ. 245, 111840 (2020).

    Article  Google Scholar 

  41. Aviso+. Timeline of modern radar altimetry missions, version 2023/06. https://doi.org/10.24400/527896/A02-2022.001 (2022).

  42. Collard, F., Ardhuin, F. & Chapron, B. Monitoring and analysis of ocean swell fields from space: new methods for routine observations. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005215 (2009).

  43. Le Traon, Y. et al. From observation to information and users: the copernicus marine service perspective. Syst. Rev. Article 6, 234 (2019).

    Google Scholar 

  44. Morim, J. et al. A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts. Nat. Sci. Data 9, 358 (2022).

    Article  Google Scholar 

  45. Gavrikov, Ae.Ras-naad: 40-yr high-resolution north atlantic atmospheric hindcast for multipurpose applications (new dataset for the regional mesoscale studies in the atmosphere and the ocean). J. Appl. Meteorol. Climatol. 59, 793–817 (2020).

    Article  Google Scholar 

  46. Alday, M., Accensi, M., Arduhin, F. & Dodet, G. A global wave parameter database for geophysical applications. part 3: improved forcing and spectral resolution. Ocean Model. 166, 101848 (2021).

    Article  Google Scholar 

  47. Timmermans, B., Stone, D., Wehner, M. & Krishnan, H. Impact of tropical cyclones on modeled extreme wind-wave climate. Geophys. Res. Lett. 44, 1393–1401 (2017).

    Article  Google Scholar 

  48. Hodges, K., Cobb, A. & Vidale, P. How well are tropical cyclones represented in reanalysis datasets? J. Clim. 30, 5243–5264 (2017).

    Article  Google Scholar 

  49. Slocum, C., Naufal Razin, M., Knaff, J. & Stow, J. Does era5 mark a new era for resolving the tropical cyclone environment? J. Clim. 35, 3547–3564 (2022).

    Article  Google Scholar 

  50. Dulac, W., Cattiaux, J., Chauvin, F., Bourdin, S. & Fromang, S. How realistic are tropical cyclones in the era5 reanalysis? EGU22-5755, updated on 04 May 2023 1025–1039, https://doi.org/10.5194/egusphere-egu22-5755 (2023).

  51. Han, Z. et al. Evaluation on the applicability of era5 reanalysis dataset to tropical cyclones affecting shanghai. Q. J. R. Meteorol. Soc. 16, 1025–1039 (2022).

    Google Scholar 

  52. Law-Chune, S. et al. Waverys: a cmems global wave reanalysis during the altimetry period. Ocean Dyn. 71, 357–378 (2021).

    Article  Google Scholar 

  53. Morim, J. et al. Understanding uncertainties in contemporary and future extreme wave events for broad-scale impact and adaptation planning. Sci. Adv. 9, eade3170 (2023).

    Article  Google Scholar 

  54. Erikson, L. et al. Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble. Nat. Commun. Earth Environ. 3, 320 (2022).

    Article  Google Scholar 

  55. Ardhuin, F. et al. Comparison of wind and wave measurements and mnodels in the western mediterranean sea. Ocean Eng. 34, 526–541 (2007).

    Article  Google Scholar 

  56. Aarnes, O., Abdalla, S., Jean-Raymond, B. & Breivik, O. Marine wind and wave height trends at different era-interim forecast ranges. J. Clim. 28, 819–837 (2015).

    Article  Google Scholar 

  57. Casas-Prat, M. et al. Effects of internal climate variability on historical ocean wave height trend assessment. Front. Mar. Sci. 9, 847017 (2022).

    Article  Google Scholar 

  58. Meucci, A., Young, I. R., Aarnes, O. J. & Breivik, Ø. Comparison of Wind Speed and Wave Height Trends from Twentieth-Century Models and Satellite Altimeters. J. Clim. 33, 611–624 (2020).

    Article  Google Scholar 

  59. Sharmar, V. & Markina, M. Evaluation of interdecadal trends in sea ice, surface winds and ocean waves in the Arctic in 1980-2019. Russ. J. Earth Sci. 21, 2021 (2021).

    Article  Google Scholar 

  60. Stopa, J., Ardhuin, F., Stutzmann, E. & Lecocq, T. Sea state trends and variability: consistency between models, altimetres, buoys, and seismic data (1979-2016). J. Geophys. Res. Oceans 124, 3923–3940 (2019).

    Article  Google Scholar 

  61. Ardhuin, F. et al. Observing sea states. Frontiers in Marine Science https://doi.org/10.3389/fmars.2019.00124 (2019).

  62. Herbach, H. et al. The era5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  63. Hersbach, H. et al. Operational global reanalysis: progress, future directions and synergies with NWP. ECMWF ERA Report Series 27 (1986).

  64. Saha, S. et al. The ncep climate forecast system version 2. J. Clim. 146, 2185–2208 (2014).

    Article  Google Scholar 

  65. Chawla, A., Spindler, D. & Tolman, H. Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model. 70, 189–206 (2010).

    Article  Google Scholar 

  66. Casas-Prat, M. et al. A 100-member ensemble simulations of global historical (1951-2010) wave heights. Nat. Sci. Data 10, 362 (2023).

    Article  Google Scholar 

  67. Patra, A., Dodet, G. & Accensi, M. Historical global ocean wave data simulated with cmip6 anthropogenic and natural forcings. Nat. Sci. Data 10, 325 (2023).

    Article  Google Scholar 

  68. Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Nat. Sci. Data 7, 1 (2020).

    Google Scholar 

  69. Morim, J., Hemer, M., Cartwright, N., Strauss, D. & Andutta, F. On the concordance of 21st century wind-wave climate projections. Glob. Planet. Change 167, 160–171 (2018).

    Article  Google Scholar 

  70. Erikson, L. H. et al. Ocean wave time-series data simulated with a global-scale numerical wave model under the influence of projected cmip6 wind and sea ice fields. U.S. Geological Survey data https://doi.org/10.5066/P9KR0RFM (2022).

  71. Kumar, R., Lemos, G., Semedo, A. & Alsaaq, F. Parameterization-driven uncertainties in single-forcing, single-model wave climate projections from a cmip6-derived dynamic ensemble. Climate 10, 51 (2022).

    Article  Google Scholar 

  72. Meucci, A., Young, I., Hemer, M., Trenham, C. & Watterson, I. 140 years of global ocean wind-wave climate derived from cmip6 access-cm2 and ec-earth3 gcms: global trends, regional changes, and future projections. J. Clim. 36, 1605–1631 (2023).

    Article  Google Scholar 

  73. Mori, J., Hemer, M., Andutta, F., Shimura, T. & Cartwright, N. Skill and uncertainty in surface wind fields from general circulation models: intercomparison of bias between AGCM, AOGCM and ESM global simulations. Int. J. Climatol. 40, 2659–2673 (2019).

    Article  Google Scholar 

  74. Lobeto, H., Menendez, M. & Losada, I. J. Projections of Directional Spectra Help to Unravel the Future Behavior of Wind Waves. Front. Mar. Sci. 8, 655490 (2021).

    Article  Google Scholar 

  75. Lobeto, H., Menendez, M. & Losada, I. J. The effect of climate change on wind-wave directional spectra. Glob. Planet. Change 213, 103820 (2022).

    Article  Google Scholar 

  76. Roberts, M. et al. Projected future changes in tropical cyclones usingthe cmip6 highresmip multimodel ensemble. Geophys. Res. Lett. 47, e2020GL088662 (2020).

    Article  Google Scholar 

  77. Shimura, T., Mori, N. & Mase, H. future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H. J. Clim. 28, 9838–9856 (2015).

    Article  Google Scholar 

  78. Shimura, T., Pringle, W., Mori, N., MIyashita, T. & Yoshida, K. Seamless projections of global storm surge and ocean waves under a warming climate. Geophys. Res. Lett. 49, e2021GL097427 (2015).

    Article  Google Scholar 

  79. Haarsma, R. et al. High resolution model intercomparison project (highresmip v1.0) for cmip6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Article  Google Scholar 

  80. Parker, K. et al. Relative contributions of water-level components to extreme water levels along the us southeast atlantic coast from a regional-scale water-level hindcast. Nat. Hazards 874, https://doi.org/10.1007/s11069-023-05939-6 (2023).

  81. Morim, J. et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 9, 711–718 (2019).

    Article  Google Scholar 

  82. Morim, J. et al. A global ensemble of ocean wave climate projections from cmip5-driven models. Nat. Sci. Data 7, 105 (2020).

    Article  Google Scholar 

  83. Morim, J. et al. Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 16, 074056 (2021).

    Article  Google Scholar 

  84. Casas-Prat, M., Wang, X. L. & Swart, N. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model. 123, 66–85 (2018).

    Article  Google Scholar 

  85. Casas-Prat, M. & Wang, X. L. Projections of Extreme Ocean Waves in the Arctic and Potential Implications for Coastal Inundation and Erosion. J. Geophys. Res. Oceans 125, e2019JC015745 (2020).

    Article  Google Scholar 

  86. Casas-Prat, M. & Wang, X. Sea ice retreat contributes to projected increases in extreme arctic ocean surface waves. Geophys. Res. Lett. 47, e2020GL088100 (2020).

    Article  Google Scholar 

  87. Jiang, X., Xie, B., Bao, Y. & Song, Z. Global 3-hourly wind-wave and swell data for wave climate and wave energy resource research from 1950 to 2100. Nat. Sci. Data 10, 1 (2023).

    Google Scholar 

  88. Badriana, M. & Lee, H. S. Multimodel ensemble projections of wave climate in the western north pacific using cmip6 marine surface winds. J. Mar. Sci. Eng. 9, 835 (2021).

    Article  Google Scholar 

  89. Liu, J., Meucci, A. & Young, I. Projected wave climate of bass strait and south-east australia by the end of the twenty-first century. Clim. Dyn. 60, 393–407 (2023).

    Article  Google Scholar 

  90. Pourali, M., Kavianpour, M., Kamranzad, B. & Alizadeh, M. Future variabiilty of wave energy in the gulf of oman using a high resolution cmip6 climate model. Energy 262, 125552 (2023).

    Article  Google Scholar 

  91. Outen, S. & Sobolowski, S. Extreme wind projections over europe from the euro-cordex regional climate models. Weather Clim. Extrem. 33, 100363 (2021).

    Article  Google Scholar 

  92. Christensen, J. H. & Christensen, O. B. A summary of the prudence model projections of changes in european climate by the end of this century. Clim. Change 81, 7–30 (2007).

    Article  Google Scholar 

  93. van der Linden, P. & (eds.), J. M. Ensembles: climate change and its impacts: summary of research and results from the ensembles project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK 160pp (2009).

  94. Lira-Loarca, A., Ferrai, F., Mazzino, A. & Besio, G. Future wind and wave energy resources and exploitability in the mediterranean sea by 2100. Appl. Energy 302, 117492 (2021).

    Article  Google Scholar 

  95. UNFCCC. Report of the structured expert dialogue on the 2013-2015 review framework convention on climate change. Tech. Rep. (2015).

  96. Patra, A., Min, S., Kumar, P. & Wang, X. Changes in extreme ocean wave heights under 1.5c, 2c, and 3c global warming. Weather Clim. Extrem. 33, 100358 (2021).

    Article  Google Scholar 

  97. Shepherd, T. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article  Google Scholar 

  98. Walden, H. et al. Long term variability. Fourth Int. Ship Structure Congress 49-59 (Royal Institute of Naval Architecture) (1970).

  99. Neu, H. J. Interannual variations and longer-term changes in the sea state of the North Atlantic from 1970 to 1982. J. Geophys. Res. Oceans 89, 6397–6402 (1984).

    Article  Google Scholar 

  100. Allan, J. & Komar, P. Are ocean wave heights increasing in the eastern North Pacific? Eos, Trans. Am. Geophys. Union 81, 561–567 (2000).

    Article  Google Scholar 

  101. Gulev, S. & Hasse, L. Changes of wind waves in the north atlantic over the last 30 years. Int. J. Climatol. 19, 1091–1117 (1999).

    Article  Google Scholar 

  102. Wang, X. L., Feng, Y. & Swail, V. R. North Atlantic wave height trends as reconstructed from the 20th century reanalysis. Geophys. Res. Lett. https://doi.org/10.1029/2012GL053381 (2012).

  103. Woolf, D. Variability and predictability of the north atlantic wave climate. J. Geophys. Res. 107, 3145 (2002).

    Google Scholar 

  104. Hanafin, J. et al. Phenomenal sea states and swell from a north atlantic storm in february 2011: a comprehensive analysis. Bull. Am. Meteorol. Soc. 93, 1825–1832 (2012).

    Article  Google Scholar 

  105. Almar, R. et al. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 110, 48–59 (2015).

    Article  Google Scholar 

  106. Cavaleri, L. & Sclavo, M. The calibration of wind and wave model data in the mediterranean sea. Coast. Eng. 53, 613–627 (2006).

    Article  Google Scholar 

  107. Mentaschi, L., Besio, G., Cassola, F. & Mazzino, A. Performance evaluation of wavewatch iii in the mediterreanean sea. Ocean Model. 90, 82–94 (2015).

    Article  Google Scholar 

  108. Izaguirre, C., Mendez, F., Menendez, M., Luceño, A. & Losada, I. Extreme wave climate variability in southern europe using satellite data. J. Geophys. Res. 115, C04009 (2010).

    Google Scholar 

  109. Barbariol, F. et al. Wind waves in the mediterranean sea: and era5 reanalysis wind-based climatology. Front. Mar. Sci. 8, 760614 (2021).

    Article  Google Scholar 

  110. Pérez-Gómez, B. et al. Understanding sea level processes during western mediterranean storm gloria. Front. Mar. Sci. 8, 647437 (2021).

    Article  Google Scholar 

  111. Bromirski, P. D. & Cayan, D. R. Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. J. Geophys. Res. Oceans 120, 3419–3443 (2015).

    Article  Google Scholar 

  112. Shimura, T., Mori, N. & Mase, H. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. J. Clim. 26, 8654–8670 (2013).

    Article  Google Scholar 

  113. Freitas, A., Bernardino, M. & Guedes Soares, C. The influence of the arctic oscillation on north atlantic wind and wave climate by the end of the 21st century. Ocean Eng. 246, 110634 (2022).

    Article  Google Scholar 

  114. Hochet, A., Dodet, G., Ardhuin, F., Hemer, M. & Young, I. Sea state decadal variability in the north atlantic: a review. Climate 9, 173 (2021).

    Article  Google Scholar 

  115. Castelle, B., Dodet, G., Masselink, G. & Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: the West Europe Pressure Anomaly. Geophys. Res. Lett. 44, 1384–1392 (2017).

    Article  Google Scholar 

  116. Izaguirre, C., Mendez, F., Menendez, M. & Losada, I. Global extreme wave height variability based on satellite data. Geophys. Res. Lett. 38 (2011).

  117. Reguero, B. G., Losada, I. J. & Méndez, F. J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019 10:1 10, 1–14 (2019).

    Google Scholar 

  118. Silva, A. et al. Climate-induced variability in south atlantic wave direction over the past three millennia. Nat. Sci. Rep. 10, 18553 (2020).

    Google Scholar 

  119. Morales-Márquez, V., Orfila, A., Simarro, G. & Marcos, M. Extreme waves and climatic patterns of variability in the eastern North Atlantic and Mediterranean basins. Ocean Sci. 16, 1385–1398 (2020).

    Article  Google Scholar 

  120. Lionello, P. & Sanna, A. Mediterranean wave climate variability and its links with nao and indian monsoon. Clim. Dyn. 25, 611–623 (2005).

    Article  Google Scholar 

  121. Bacon, S. & Carter, D. J. Wave climate changes in the North Atlantic and North Sea. Int. J. Climatol. 11, 545–558 (1991).

    Article  Google Scholar 

  122. Bouws, E., Jannink, D. & Komen, G. The increasing wave height in the North Atlantic Ocean. Bull. Am. Soc. 77, 2275–2278 (1996).

    Article  Google Scholar 

  123. Carter, D. & Draper, L. Has the north-east Atlantic become rougher? Nature 332, 494 (1988).

    Article  Google Scholar 

  124. Gunther, H. et al. The wave climate of the Northeast Atlantic over the period 1955-1994: the WASA wave hindcast. The Global Atmosphere and Ocean System 77 (1997).

  125. Wang, X. L. & Swail, V. R. Trends of Atlantic Wave Extremes as Simulated in a 40-Yr Wave Hindcast Using Kinematically Reanalyzed Wind Fields in: J. Clim. Volume 15 Issue 9 (2002). J. Clim. 15, 1020–1035 (2002).

    Article  Google Scholar 

  126. Hochet, A. et al. Time of emergence for altimetry-based significant wave height changes in the north atlantic. Geophys. Res. Lett. 50, e2022GL102348 (2023).

    Article  Google Scholar 

  127. Bertin, X., Prouteau, E. & Letetrel, C. A significant increase in wave height in the north atlantic ocean over the 20th century. Glob. Planet. Change 106, 77–83 (2013).

    Article  Google Scholar 

  128. Lemos, G., Menendez, M., Semedo, A., Miranda, P. M. & Hemer, M. On the decreases in North Atlantic significant wave heights from climate projections. Clim. Dyn. 57, 2301–2324 (2021).

    Article  Google Scholar 

  129. Perez, J., Menendez, M., Camus, P., Mendez, F. & Losada, I. Statistical multi-model climate projections of surface ocean waves in europe. Ocean Model. 96, 161–170 (2015).

    Article  Google Scholar 

  130. Meucci, A., Young, I., Hemer, M., Kirezci, E. & Ranasinghe, R. Projected 21st century changes in extreme wind-wave events. Sci. Adv. 6, eaaz7295 (2020).

    Article  Google Scholar 

  131. Lemos, G. et al. Mid-twenty-first century global wave climate projections: results from a dynamic cmip5 based ensemble. Glob. Planet. Change 172, 69–87 (2019).

    Article  Google Scholar 

  132. Metaschi, L., Vousdoukas, M., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416–2426 (2017).

    Article  Google Scholar 

  133. Bricheno, L. & Wolf, J. Future wave conditions of europe, in response to high-end climate change scenarios. J. Geophys. Res. Oceans 123, 8762–8791 (2018).

    Article  Google Scholar 

  134. De Leo, F., Besio, G. & Mentaschi, L. Trends and variability of ocean waves under RCP8.5 emission scenario in the Mediterranean Sea. Ocean Dyn. 71, 97–117 (2021).

    Article  Google Scholar 

  135. Lira-Loarca, A. & Besio, G. Future changes and seasonal variability of the directional wave spectra in the mediterranean sea for the 21st century. Environ. Res. Lett. 17, 104015 (2022).

    Article  Google Scholar 

  136. Casas-Prat, M. & Sierra, J. P. Projected future wave climate in the NW Mediterranean Sea. J. Geophys. Res. Oceans 118, 3548–3568 (2013).

    Article  Google Scholar 

  137. Toomey, T., Amores, A., Marta, M., Orfila, A. & Romero, R. Coastal hazards of tropical-like cyclones over the mediterranean sea. J. Geophys. Res. Oceans 127, e2021JC017964 (2022).

    Article  Google Scholar 

  138. Reguero, B. G., Losada, I. J. & Méndez, F. J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 148, 366–380 (2015).

    Article  Google Scholar 

  139. Young, I. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 19, 931–950 (1999).

    Article  Google Scholar 

  140. Gulev, S. Assessment of the reliability of wave observations from voluntary observing ships: insights from teh validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res. 108, 3236 (2003).

    Google Scholar 

  141. Menéndez, M., Méndez, F. J., Losada, I. J. & Graham, N. E. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical research letters 35, https://doi.org/10.1029/2008GL035394 (2008).

  142. Ruggiero, P., Komar, P. D. & Allan, J. C. Increasing wave heights and extreme value projections: the wave climate of the U.S. Pacific Northwest. Coast. Eng. 57, 539–552 (2010).

    Article  Google Scholar 

  143. Echevarria, E. R., Hemer, M. A. & Holbrook, N. J. Seasonal Variability of the Global Spectral Wind Wave Climate. J. Geophys. Res. Oceans 124, 2924–2939 (2019).

    Article  Google Scholar 

  144. Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 2015 8:10 8, 801–807 (2015).

    Google Scholar 

  145. Izaguirre, C., Méndez, F. J., Menéndez, M. & Losada, I. J. Global extreme wave height variability based on satellite data. Geophys. Res. Lett. 38, https://doi.org/10.1029/2011GL047302 (2011).

  146. Kaur, S., Kumar, P., Weller, E., Min, S. & Jin, J. Multi-model ensemble projections of extreme ocean wave heights over the indian ocean. Clim. Dyn. 56, 2163–2180 (2021).

    Article  Google Scholar 

  147. Woo, H.-J. & Park, K.-A. Long-term trend of satellite-observed significant wave height and impact on ecosystem in the east/japan sea. Nat. Sci. Rep. 143, 1–14 (2017).

    Google Scholar 

  148. Sasaki, W. Changes in wave energy resources around japan. Geophys. Res. Lett. 39, 1 (2012).

    Article  Google Scholar 

  149. Wu, L., Wang, X. L. & Feng, Y. Historical wave height trends in the South and East China Seas, 1911 2010. J. Geophys. Res. Oceans 119, 4399–4409 (2014).

    Article  Google Scholar 

  150. Young, I. R., Fontaine, E., Liu, Q. & Babanin, A. V. The Wave Climate of the Southern Ocean. J. Phys. Oceanogr. 50, 1417–1433 (2020).

    Article  Google Scholar 

  151. Shand, T. D. et al. Long Term Trends in NSW Coastal Wave Climate and Derivation of Extreme Design Storms. In 2011 NSW Coastal Conference (2011).

  152. Shimura, T., Mori, N. & Hemer, M. Variability and future decreases in winter wave heights in the western north pacific. Geophys. Res. Lett. 43, 2716–2722 (2016).

    Article  Google Scholar 

  153. Lobeto, H., Menendez, M. & Losada, I. J. Future behavior of wind wave extremes due to climate change. Sci. Rep. 11, 7869 (2021).

    Article  Google Scholar 

  154. Erikson, L., Hegermiller, C., Barnard, P., Ruggiero, P. & van Ormondt, M. Projected wave conditions in the eastern north pacific under the influence of two cmip5 climate scenarios. Ocean Model. 96, 171–185 (2015).

    Article  Google Scholar 

  155. Dowdy, A., Mills, G., Timbal, B. & Wang, Y. Fewer large waves projected for eastern australia due to decreasing storminess. Nat. Clim. Change 4, 282–286 (2014).

    Article  Google Scholar 

  156. Li, D. et al. Dynamical projections of the mean and extreme wave climate in the bohai sea, yellow sea and east china sea. Front. Mar. Sci. 9, 844113 (2022).

    Article  Google Scholar 

  157. Hemer, M., Fan, Y., Mori, N., Semedo, A. & Wang, X. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 3, 471–476 (2013).

    Article  Google Scholar 

  158. Taniguchi, K. & Tajima, Y. Variations in extreme wave events near a south pacific island under global warming: case study of tropical cyclone tomas. Prog. Earth Planet Sci. 7, 1–16 (2020).

    Article  Google Scholar 

  159. Sundar, V. Wave Characteristics Off the South east coast of India. Ocean Eng. 13, 327–338 (1986).

    Article  Google Scholar 

  160. Kumar, V. S., Dubhashi, K. K. & Balakrishnan Nair, T. T. Spectral wave characteristics off Gangavaram, Bay of Bengal. J. Oceanogr. 70, 307–321 (2014).

    Article  Google Scholar 

  161. Patra, A. & Bhaskaran, P. K. Trends in wind-wave climate over the head Bay of Bengal region. Int. J. Climatol. 36, 4222–4240 (2016).

    Article  Google Scholar 

  162. Patra, A. & Bhaskaran, P. K. Temporal variability in wind wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal. Clim. Dyn. 49, 1271–1288 (2017).

    Article  Google Scholar 

  163. Kumar, V. S. & Anoop, T. R. Spatial and temporal variations of wave height in shelf seas around India. Nat. Hazards 78, 1693–1706 (2015).

    Article  Google Scholar 

  164. Shanas, P. R. & Kumar, V. S. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data. Nat. Hazards Earth Syst. Sci. 14, 1371–1381 (2014).

    Article  Google Scholar 

  165. Hithin, N. K., Kumar, V. S. & Shanas, P. R. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: a study based on satellite altimeter data. Ocean Eng. 108, 416–425 (2015).

    Article  Google Scholar 

  166. Schott, F. A. & McCreary, J. P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).

    Article  Google Scholar 

  167. Kumar, P., Kaur, S., Weller, E. & Min, S.-K. Influence of Natural Climate Variability on the Extreme Ocean Surface Wave Heights Over the Indian Ocean. J. Geophys. Res. Oceans 124, 6176–6199 (2019).

    Article  Google Scholar 

  168. Young, I., Zieger, S. & Babanin, A. Global trends in wind speed and wave height. Science 332, 451–455 (2011).

    Article  Google Scholar 

  169. Semedo, A., SušElj, K., Rutgersson, A. & Sterl, A. A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 24, 1461–1479 (2011).

    Article  Google Scholar 

  170. Takbash, A., Young, I. R. & Breivik, Ø. Global Wind Speed and Wave Height Extremes Derived from Long-Duration Satellite Records. J. Clim. 32, 109–126 (2019).

    Article  Google Scholar 

  171. Remya, P. G., Kumar, B. P., Srinivas, G. & Balakrishnan Nair, T. M. Impact of tropical and extra tropical climate variability on Indian Ocean surface waves. Clim. Dyn. 54, 4919–4933 (2020).

    Article  Google Scholar 

  172. Kumar, PrashantMin,S. K., Weller, E., Lee, H. & Wang, X. L. Influence of climate variability on extreme ocean surface wave heights assessed from ERA-interim and ERA-20C. J. Clim. 29, 4031–4046 (2016).

    Article  Google Scholar 

  173. Marshall, A. G., Hemer, M. A., Hendon, H. H. & McInnes, K. L. Southern annular mode impacts on global ocean surface waves. Ocean Model. 129, 58–74 (2018).

    Article  Google Scholar 

  174. Patra, A., Min, S. K. & Seong, M. G. Climate variability impacts on global extreme wave heights: seasonal assessment using satellite data and ERA5 reanalysis. J. Geophys. Res. Oceans 125, e2020JC016754 (2020).

    Article  Google Scholar 

  175. Singh, O. P., Ali Khan, T. M. & Rahman, M. S. Probable reasons for enhanced cyclogenesis in the Bay of Bengal during July-August of ENSO years. Glob. Planet. Change 29, 135–147 (2001).

    Article  Google Scholar 

  176. Odériz, I. et al. Natural Variability and Warming Signals in Global Ocean Wave Climates. Geophys. Res. Lett. 48, e2021GL093622 (2021).

    Article  Google Scholar 

  177. Reiter, E. R. The interannual variability of the ocean-atmosphere system. J. Atmos. Sci. 35, 349–370 (1978).

    Article  Google Scholar 

  178. Anoop, T. R., Kumar, V. S., Shanas, P. R., Glejin, J. & Amrutha, M. M. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea. Ocean Sci. 12, 369–378 (2016).

    Article  Google Scholar 

  179. Srinivas, G., Remya, P. G., Malavika, S. & Balakrishnan Nair, T. M. The influence of boreal summer intraseasonal oscillations on Indowestern Pacific Ocean surface waves. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  180. Marshall, A., Hendon, H., Durrant, T. & Hemer, M. Madden julian oscillation impacts on global ocean surface waves. Ocean Model. 96, 136–147 (2015).

    Article  Google Scholar 

  181. Sharmar, V. D., Markina, M. Y. & Gulev, S. K. Global ocean wind-wave model hindcasts forced by different reanalyzes: a comparative assessment. J. Geophys. Res. Oceans 126, e2020JC016710 (2021).

    Article  Google Scholar 

  182. Shanas, P. R. & Kumar, V. S. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal. Int. J. Climatol. 35, 2654–2663 (2015).

    Article  Google Scholar 

  183. O’Grady, J. G., Hemer, M. A., McInnes, K. L., Trenham, C. E. & Stephenson, A. G. Projected incremental changes to extreme wind-driven wave heights for the twenty-first century. Sci. Rep. 11, 8826 (2021).

    Article  Google Scholar 

  184. Kamranzad, B. & Mori, N. Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection. Clim. Dyn. 53, 2391–2410 (2019).

    Article  Google Scholar 

  185. Roshin, E. & Deo, M. C. Derivation of design waves along the Indian coastline incorporating climate change. J. Mar. Sci. Technol. (Japan) 22, 61–70 (2017).

    Article  Google Scholar 

  186. Alizadeh, M. J., Alinejad-Tabrizi, T., Kavianpour, M. R. & Shamshirband, S. Projection of spatiotemporal variability of wave power in the Persian Gulf by the end of 21st century: GCM and CORDEX ensemble. J. Clean. Prod. 256, 120400 (2020).

    Article  Google Scholar 

  187. Kamranzad, B., Etemad-Shahidi, A., Chegini, V. & Yeganeh-Bakhtiary, A. Climate change impact on wave energy in the Persian Gulf. Ocean Dyn. 65, 777–794 (2015).

    Article  Google Scholar 

  188. Wandres, M., Pattiaratchi, C. & Hemer, M. Projected changes of the southwest australian wave climate under two atmospheric greenhouse gas concetration pathways. Ocean Model. 117, 9 (2017).

    Article  Google Scholar 

  189. Semedo, A. et al. The wind sea and swell waves climate in the Nordic seas. Ocean Dyn. 65, 223–240 (2015).

    Article  Google Scholar 

  190. Stopa, J., Ardhuin, F. & Girard-Ardhuin, F. Wave climate in the arctic 1992-2014: seasonality and trends. The Cryosphere Discuss 1–45 (2016).

  191. Wang, X., Casas-Prat, M., Feng, Y., Crosby, A. & Swail, V. Historical changes in the davis strait baffin bay surface winds and waves, 1979–2016. J. Clim. 34, 8879–8896 (2021).

    Google Scholar 

  192. Witze, A. Arctic sea ice hits second-lowest level on record. Nature https://doi.org/10.1038/d41586-020-02705-7 (2020).

  193. Thomson, J. et al.

  194. Francis, O. P., Panteleev, G. G. & Atkinson, D. E. Ocean wave conditions in the Chukchi Sea from satellite and in situ observations. Geophysical research letters 38, https://doi.org/10.1029/2011GL049839 (2011).

  195. Liu, Q., Babanin, A. V., Zieger, S., Young, I. R. & Guan, C. Wind and Wave Climate in the Arctic Ocean as Observed by Altimeters. J. Clim. 29, 7957–7975 (2016).

    Article  Google Scholar 

  196. Wang, X. L., Feng, Y., Swail, V. R. & Cox, A. Historical Changes in the Beaufort Chukchi Bering Seas Surface Winds and Waves, 1971 2013. J. Clim. 28, 7457–7469 (2015).

    Article  Google Scholar 

  197. Wang, X. L., Casas-Prat, M., Feng, Y., Crosby, A. & Swail, V. R. Historical Changes in the Davis Strait Baffin Bay Surface Winds and Waves, 1979 2016. J. Clim. 34, 8879–8896 (2021).

    Google Scholar 

  198. Thomson, J., Fan, Y., Stammerjohn, S., Stopa, J. & Rogers, E. Emerging trends in the sea state of the beaufort and chukchi seas. Ocean Model. 105, 1–12 (2016).

    Article  Google Scholar 

  199. Bush, E. & Lemmen, D. Canada’s Changing Climate Report. Tech. Rep., Government of Canada, Ottawa, ON (2019).

  200. Notz, D. & Community, S. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    Article  Google Scholar 

  201. Mioduszewski, J., Vavrus, S. & Wang, M. Arctic sea ice promotes stronger surface winds. J. Clim. 31, 8101–8119 (2018).

    Article  Google Scholar 

  202. Perrie, W., Meylan, M., Toulany, B. & Casey, M. Modelling wave ice interactions in three dimensions in the marginal ice zone. Philos. Trans. R. Soc. A 380, 20210263 (2022).

    Article  Google Scholar 

  203. Kohout, A. L., Williams, M. J., Dean, S. M. & Meylan, M. H. Storm-induced sea-ice breakup and the implications for ice extent. Nature 2014 509:7502 509, 604–607 (2014).

    Google Scholar 

  204. Batenson, A. Impact of sea ice floe size distribution on seasonal fragmentation and melt of arctic sea ice. Cryosphere 14, 403–428 (2020).

    Article  Google Scholar 

  205. Jenkins, M. & Dai, A. The Impact of Sea-Ice Loss on Arctic Climate Feedbacks and Their Role for Arctic Amplification. Geophys. Res. Lett. 48, e2021GL094599 (2021).

    Article  Google Scholar 

  206. Theron, A. et al. Quantification of risks to coastal areas and development: wave run-up and erosion. In CSIR 3rd Biennial Conference 2010. Science Real and Relevant, 16 (CSIR, CSIR International Convention Centre, Pertoria, 2010).

  207. Martínez, C. et al. Coastal erosion in central Chile: a new hazard? Ocean Coast. Manag. 156, 141–155 (2018).

    Article  Google Scholar 

  208. Meucci, A., Young, I. R. & Breivik, Ø. Wind and Wave Extremes from Atmosphere and Wave Model Ensembles. J. Clim. 31, 8819–8842 (2018).

    Article  Google Scholar 

  209. Young, I. & Donelan, M. On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ. 215, 228–241 (2018).

    Article  Google Scholar 

  210. Takbash, A. & Young, I. R. Global ocean extreme wave heights from spatial ensemble data. J. Clim. 32, 6823–6836 (2019).

    Article  Google Scholar 

  211. Hande, L. B., Siems, S. T. & Manton, M. J. Observed Trends in Wind Speed over the Southern Ocean. Geophys. Res. Lett. 39, 11802 (2012).

    Article  Google Scholar 

  212. Masselink, G. et al. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 43, 2135–2143 (2016).

    Article  Google Scholar 

  213. Castelle, B. et al. Impact of the winter 2013 2014 series of severe Western Europe storms on a double-barred sandy coast: beach and dune erosion and megacusp embayments. Geomorphology 238, 135–148 (2015).

    Article  Google Scholar 

  214. Earlie, C. S., Young, A. P., Masselink, G. & Russell, P. E. Coastal cliff ground motions and response to extreme storm waves. Geophys. Res. Lett. 42, 847–854 (2015).

    Article  Google Scholar 

  215. Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

    Article  Google Scholar 

  216. Yang, S. & Oh, J. H. Effects of modes of climate variability on wave power during boreal summer in the western North Pacific. Sci. Rep. 2020 10:1 10, 1–10 (2020).

    Google Scholar 

  217. Hoeke, R. K. et al. Widespread inundation of Pacific islands triggered by distant-source wind-waves. Glob. Planet. Change 108, 128–138 (2013).

    Article  Google Scholar 

  218. Amores, A. et al. Coastal Flooding in the Maldives Induced by Mean Sea-Level Rise and Wind-Waves: From Global to Local Coastal Modelling. Front. Mar. Sci. 8, 705 (2021).

    Article  Google Scholar 

  219. Wadey, M., Brown, S., Nicholls, R. J. & Haigh, I. Coastal flooding in the Maldives: an assessment of historic events and their implications. Nat. Hazards 89, 131–159 (2017).

    Article  Google Scholar 

  220. Amores, A., Marcos, M., Le Cozannet, G. & Hinkel, J. Coastal flooding and mean sea-level rise allowances in atoll island. Sci. Rep. 12, 1281 (2022).

    Article  Google Scholar 

  221. Mori, N. & Shimura, T. Tropical cyclone-induced coastal sea level projection and the adaptation to a changing climate. Cambridge Prisms (2023).

  222. Mori, N. & Takemi, T. Impact assessment of coastal hazards due to future changes of tropical cyclones in the north pacific ocean. Weather Clim. Extrem. 11, 53–69 (2016).

    Article  Google Scholar 

  223. Suh, K.-D., Kim, S.-W., Mori, N. & Mase, H. Effect of climate change on performance-based design of caisson breakwaters. J. Waterw. Port, Coast. Ocean Eng. 138, 3 (2012).

    Article  Google Scholar 

  224. Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).

    Article  Google Scholar 

  225. Bisoi, S. & Haldar, S. Impact of climate change on dynamic behavior of offshore wind turbine. Mar. Georesources Geotechnol. 35, 905–920 (2017).

    Article  Google Scholar 

  226. Atkinson, D. E. Observed storminess patterns and trends in the circum-arctic coastal regime. Geo-Mar. Lett. 25, 98–109 (2005).

    Article  Google Scholar 

  227. Irrgang, A. M., Lantuit, H., Manson, G. K. & G}u.

  228. Whalen, D., Kostylev, V., Fraser, M. & Stuckey, S. Mechanisms, volumetric assessment, and prognosis for rapid coastal erosion of tuktoyaktuk island, an important natural barrier for the harbour and community. Can. J. Earth Sci. 59, 945–960 (2022).

    Article  Google Scholar 

  229. Gudmestad, O. The changing climate and the arctic coastal settlements. Int. J. Environ. Impacts 1, 411–419 (2018).

    Article  Google Scholar 

  230. Melvin, A. M. et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl Acad. Sci. USA 114, E122–E131 (2017).

    Article  Google Scholar 

  231. Radosavljevic, B. et al. Threats to coastal infrastructure in the arctic: a case study from herschel island, yukon territory, canada. Estuaries and Coasts 39, 900–915 (2016).

    Article  Google Scholar 

  232. Stopa, J. E., Sutherland, P. & Ardhuin, F. Strong and highly variable push of ocean waves on Southern Ocean sea ice. Proc. Natl Acad. Sci. USA 115, 5861–5865 (2018).

    Article  Google Scholar 

  233. Voermans, J. J. et al. Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. Cryosphere 14, 4265 –4278 (2020).

    Article  Google Scholar 

  234. Sreejith, M., Remya, P. G., Kumar, P., Raj, A. & Balakrishnan, N. Exploring the impact of southern ocean sea ice on the indian ocean swells. Sci. Rep. 12, 12360 (2022).

    Article  Google Scholar 

  235. Houghton, I., Hegermiller, C., Teicheira, C. & Smit, P. Operational assimilation of spectral wave data from the sofar spotter network. Geophys. Res. Lett. 49, e2022GL098973 (2022).

    Article  Google Scholar 

  236. Greenslade, D. et al. 15 priorities for wind-wave research: an australian perspective. Bull. Am. Meteorol. Soc. 101, E446 E461 (2020).

    Article  Google Scholar 

  237. Wang, X. Accounting for autocorrelation in detecting mean-shifts in climate date series using the penalized maximal t or f test. J. Appl. Meteorol. Climatol. 47, 2493–2444 (2008).

    Article  Google Scholar 

  238. Kattsov, V. et al. Arctic sea-ice change: a grand challenge of climate science. J. Glaciol. 56, 1115–1121 (2017).

    Article  Google Scholar 

  239. Watts, M. et al. A spatial evaluation of arctic sea ice and regional limitations in cmip6 historical simulations. J. Clim. 34, 6399–6400 (2021).

    Article  Google Scholar 

  240. Cavaleri, L., Barbariol, F. & Benetazzo, A. Wind-wave modeling: where we are, where to go. J. Mar. Sci. Eng. 8, 260 (2020).

    Article  Google Scholar 

  241. Babanin, A. Ocean waves in large-scale air-sea weather and climate systems. J. Geophys. Res. Oceans 128, e2023JC019633 (2023).

    Article  Google Scholar 

  242. Squire, V. Ocean wave interactions with sea ice: a reappraisal. Annu. Rev. Fluid Mech. 52, 37–60 (2020).

    Article  Google Scholar 

  243. Gemmrich, J. & Cicon, L. Generation mechanism and prediction of an observed extreme rogue wave. Nat. Sci. Rep. 12, 1–10 (2022).

    Google Scholar 

  244. Chen, J., Pillai, A., Johanning, L. & Ashton, I. Using machine learning to derive spatial wave data: a case study for a marine energy site. Environ. Model. Softw. 142, 105066 (2021).

    Article  Google Scholar 

  245. Antolínez, J. et al. Downscaling changing coastlines in a changing climate: the hybrid approach. J. Geophys. Res. Oceans 123, 229–251 (2018).

    Article  Google Scholar 

  246. Ricondo, A. et al. Hywaves: hybrid downscaling of multimodal wave spectra to nearshore areas. Ocean Model. 184, 102210 (2023).

    Article  Google Scholar 

  247. Shope, J. B. et al. Characterizing storm-induced coastal change hazards along the united states west coast. Nat. Sci. Data 9, 224 (2022).

    Article  Google Scholar 

  248. Zimmermann, M. et al. Nearshore bathymetric changes along the alaska beaufort sea coast and possible physical drivers. Cont. Shelf Res. 242, 104742 (2022).

    Article  Google Scholar 

  249. Cavaleri, L. et al. Wave modelling in coastal and inner seas. Prog. Oceanogr. 167, 164–233 (2018).

    Article  Google Scholar 

  250. Diex-Sierra, J. et al. The worlwide c3s cordex grand ensemble: a major contribution to assess regional climate change in the ipcc ar6 atlas. Bull. Am. Meteorol. Soc. 103, E2804 E2826 (2022).

    Google Scholar 

  251. Marcos, M. et al. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett. 46, 4356–4364 (2019).

    Article  Google Scholar 

  252. Santos, V. et al. Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the netherlands. Hydrol. Earth Syst. Sci. 25, 3595–3615 (2021).

    Article  Google Scholar 

  253. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  Google Scholar 

  254. Hongo, C., Kurihara, H. & Golbuu, Y. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in palau to 2100. Nat. Hazards Earth Syst. Sci. 18, 669–686 (2018).

    Article  Google Scholar 

  255. Callaghan, D., Mumby, P. & Mason, M. Near-reef and nearshore tropical cyclone wave climate in the great barrier reef with and without reef structure. Coast. Eng. 157, 103652 (2020).

    Article  Google Scholar 

  256. Copernicus Marine In Situ Tac Data Management Team. Product User Manual For Multiparameter Copernicus In Situ TAC (PUM) (Copernicus, 2021); https://doi.org/10.13155/43494.

  257. Sea State CCI team. Product User Guide of the Sea State CCI v.3 dataset (European Space Agency, 2022); https://climate.esa.int/media/documents/Sea_State_cci_PUG_v3.1-signed.pdf.

  258. Ribal, A. & Young, I. 33 of globally calibrated wave height and wind speed data based on altimeter observations. Nat. Sci. Data 6, 77 (2019).

    Article  Google Scholar 

  259. Ribal, A. & Young, I. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Australian Ocean Data Network https://doi.org/10.26198/5c77588b32cc1 (2019).

  260. Donlon, C. et al. The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 12, 1929–1951 (2020).

    Article  Google Scholar 

  261. Wang, X. & Swail, V. Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circultion regimes. J. Clim. 14, 2204–2221 (2001).

    Article  Google Scholar 

  262. Gutiérrez, J. et al. Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. (Cambridge University Press, 2021).

  263. Tebaldi, C., Arblaster, J. & Knutti, R. Mapping model agreement on future climate projections. Geophys. Res. Lett. https://doi.org/10.1029/2011GL049863 (2011).

Download references

Acknowledgements

This paper is a contribution of the Coordinated Ocean Wave Climate Project (COWCLiP) group, working to the formal workplan of the WMO Standing Committee on Marine Meteorology and Oceanography. IMOS data were sourced from Australia’s Integrated Marine Observing System (IMOS) – IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). We also thank the European Space Agency Climate Change Initiative (CCI) for providing the Sea State CCI datasets. J.M. acknowledges the University of Central Florida (UCF) Pre-eminent program (P3).

Author information

Authors and Affiliations

Authors

Contributions

M.C.-P. led the writing, conducted the majority of the analyses, and made Figs. 25 and Table 1. G.D. made Fig. 1. M.C-P., M.A.H., G.D., J.M., X.L.W., N.M. and I.Y. contributed to the general design of the manuscript, including text structure and figure conceptualization. Y.F. contributed to the statistical data analysis. All co-authors (except Y.F.) contributed to the literature review, to writing of initial drafts regarding specific sections, and to editing the final draft: M.C.-P., L.E. and X.L.W. contributed to the Arctic Ocean section; G.D., M.M., X.L.W., M.C.-P. and J.M. to the Atlantic Ocean section; B.K. and P.K. to the Indian Ocean section; N.M., J.M. and X.L.W. to the Pacific Ocean section; and I.Y. and M.A.H. to the Southern Ocean section.

Corresponding author

Correspondence to Mercè Casas-Prat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Lorenzo Mentaschi, Rodrigo Campos Caba, Borja Reguero, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas-Prat, M., Hemer, M.A., Dodet, G. et al. Wind-wave climate changes and their impacts. Nat Rev Earth Environ 5, 23–42 (2024). https://doi.org/10.1038/s43017-023-00502-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00502-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing