Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p19ARF directly and differentially controls the functions of c-Myc independently of p53

Abstract

Increased expression of the oncogenic transcription factor c-Myc causes unregulated cell cycle progression1. c-Myc can also cause apoptosis, but it is not known whether the activation and/or repression of c-Myc target genes mediates these diverse functions of c-Myc. Because unchecked cell cycle progression leads to hyperproliferation and tumorigenesis, it is essential for tumour suppressors, such as p53 and p19ARF (ARF), to curb cell cycle progression in response to increased c-Myc (refs 2, 3). Increased c-Myc has previously been shown to induce ARF expression, which leads to cell cycle arrest or apoptosis through the activation of p53 (ref. 4). Here we show that ARF can inhibit c-Myc by a unique and direct mechanism that is independent of p53. When c-Myc increases, ARF binds with c-Myc and dramatically blocks c-Myc's ability to activate transcription and induce hyperproliferation and transformation. In contrast, c-Myc's ability to repress transcription is unaffected by ARF and c-Myc-mediated apoptosis is enhanced. These differential effects of ARF on c-Myc function suggest that separate molecular mechanisms mediate c-Myc-induced hyperproliferation and apoptosis. This direct feedback mechanism represents a p53-independent checkpoint to prevent c-Myc-mediated tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endogenous ARF colocalizes with c-Myc in the nucleoplasm upon c-Myc overexpression.
Figure 2: ARF binds to c-Myc.
Figure 3: ARF differentially regulates the transcriptional activities of c-Myc.
Figure 4: ARF inhibits hyperproliferation and transformation by c-Myc, yet facilitates c-Myc-induced apoptosis.

Similar content being viewed by others

References

  1. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY complex. Adv. Cancer Res. 84, 81–154 (2002)

    Article  CAS  Google Scholar 

  2. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Pelengaris, S., Khan, M. & Evan, G. c-MYC: More than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002)

    Article  CAS  Google Scholar 

  4. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998)

    Article  CAS  Google Scholar 

  5. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999)

    Article  CAS  Google Scholar 

  6. Datta, A. et al. Myc-ARF interaction inhibits the functions of Myc. J. Biol. Chem. 279, 36698–36707 (2004)

    Article  CAS  Google Scholar 

  7. Grandori, C. & Eisenman, R. N. Myc target genes. Trends Biochem. Sci. 22, 177–181 (1997)

    Article  CAS  Google Scholar 

  8. Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 (1999)

    Article  CAS  Google Scholar 

  9. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nature Genet. 21, 220–224 (1999)

    Article  CAS  Google Scholar 

  10. O'Hagan, R. C. et al. Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev. 14, 2185–2191 (2000)

    Article  CAS  Google Scholar 

  11. Marhin, W. W., Chen, S., Facchini, L. M., Fornace, A. J. Jr & Penn, L. Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834 (1997)

    Article  CAS  Google Scholar 

  12. Oster, S. K. et al. Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression. Mol. Cell. Biol. 20, 6768–6778 (2000)

    Article  CAS  Google Scholar 

  13. Xiao, Q. et al. Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dev. 12, 3803–3808 (1998)

    Article  CAS  Google Scholar 

  14. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992)

    Article  CAS  Google Scholar 

  15. Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994)

    Article  CAS  Google Scholar 

  16. Lenahan, M. K. & Ozer, H. L. Induction of c-myc mediated apoptosis in SV40-transformed rat fibroblasts. Oncogene 12, 1847–1854 (1996)

    CAS  PubMed  Google Scholar 

  17. Amanullah, A., Liebermann, D. A. & Hoffman, B. p53-independent apoptosis associated with c-Myc-mediated block in myeloid cell differentiation. Oncogene 19, 2967–2977 (2000)

    Article  CAS  Google Scholar 

  18. Fukasawa, K., Wiener, F., Vande Woude, G. F. & Mai, S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15, 1295–1302 (1997)

    Article  CAS  Google Scholar 

  19. Korgaonkar, C., Zhao, L., Modestou, M. & Quelle, D. E. ARF function does not require p53 stabilization or Mdm2 relocalization. Mol. Cell. Biol. 22, 196–206 (2002)

    Article  CAS  Google Scholar 

  20. Sakamuro, D. et al. c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11, 2411–2418 (1995)

    CAS  PubMed  Google Scholar 

  21. Trudel, M. et al. c-myc-induced apoptosis in polycystic kidney disease is Bcl-2 and p53 independent. J. Exp. Med. 186, 1873–1884 (1997)

    Article  CAS  Google Scholar 

  22. Tsuji, K. et al. p53-independent apoptosis is induced by the p19ARF tumor suppressor. Biochem. Biophys. Res. Commun. 295, 621–629 (2002)

    Article  CAS  Google Scholar 

  23. Weber, J. D. et al. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 14, 2358–2365 (2000)

    Article  CAS  Google Scholar 

  24. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999)

    Article  CAS  Google Scholar 

  25. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999)

    Article  CAS  Google Scholar 

  26. Haviernik, P., Schmidt, M., Hu, X. & Wolff, L. Consistent inactivation of p19(Arf) but not p15(Ink4b) in murine myeloid cells transformed in vivo by deregulated c-Myc. Oncogene 22, 1600–1610 (2003)

    Article  CAS  Google Scholar 

  27. Oster, S. K., Mao, D. Y., Kennedy, J. & Penn, L. Z. Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22, 1998–2010 (2003)

    Article  CAS  Google Scholar 

  28. Conzen, S. D. et al. Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol. Cell. Biol. 20, 6008–6018 (2000)

    Article  CAS  Google Scholar 

  29. Soucek, L. et al. Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res. 62, 3507–3510 (2002)

    CAS  PubMed  Google Scholar 

  30. Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Sherr and S. Hiebert for pCMV5-ARF and ARF-/- MEFs, G. Zambetti for DKO MEFs, R. DePinho for htert-SEAP and cul1-luc, L. Penn for gadd45-luc and pdgfβr-luc, E. Ruley for p53-/- MEFs, J. Pietenpol for REF 112 cells, and J. Sedivy for HO16 cells. We also thank R. Eisenman for critical review of the manuscript. This work was supported by grants from NIH to S.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Methods used for this study not described in the main article, including details on construction of expression vectors, cell culture, transfection, generation of cell lines, all PCR primers used, northern blot analysis, cell proliferation and apoptosis assays. (DOC 46 kb)

Supplementary Figure 1

Analysis of the effects of ARF on additional c-Myc target gene reporters and on the expression of additional endogenous c-Myc target genes not shown in main article. (PPT 115 kb)

Supplementary Figure 2

Co-immunoprecipitation analysis of ARF and c-Myc with Max, which was described, but not shown, in main article. (PPT 54 kb)

Supplementary Figure 3

Immunoblot analysis of c-Myc, c-MycER, ARF, p53, and p21 protein expression in the cell lines used for this study. (PPT 186 kb)

Supplementary Figure Legends

Legends to Supplementary Figures 1-3. (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Gregory, M., Li, Z. et al. p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712–717 (2004). https://doi.org/10.1038/nature02958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02958

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing