Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental demonstration of five-photon entanglement and open-destination teleportation

Abstract

Quantum-mechanical entanglement of three1,2 or four3,4 particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism5,6. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required7,8 for universal quantum error correction. Another key process in distributed quantum information processing9,10, similar to encoding and decoding, is a teleportation protocol11,12 that we term ‘open-destination’ teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation9,10 and multi-party quantum communication13,14.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagrams showing the principles of generating five-photon entanglement and of achieving open-destination teleportation.
Figure 2: Set-up for experimental demonstration of five-photon entanglement and open-destination teleportation.
Figure 3: Experimental results showing the procedure used to achieve perfect temporal overlap for photons 1 and 2 and for photons 3 and 4.
Figure 4: Experimental results for the observation of five-photon entanglement.

References

  1. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    ADS  CAS  Article  Google Scholar 

  4. Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4439 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum non-locality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000)

    ADS  CAS  Article  Google Scholar 

  6. Zhao, Z. et al. Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003)

    ADS  Article  Google Scholar 

  7. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824–3851 (1996)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

    ADS  CAS  Article  Google Scholar 

  9. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 83, 3081–3084 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  12. Karlsson, A. & Bourennane, M. Quantum teleportation using three-photon entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  13. Hillery, M., Buzek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. Scarani, V. & Gisin, N. Quantum communication between N partners and Bell's inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    ADS  CAS  Article  Google Scholar 

  15. Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowski, M. Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997)

    ADS  CAS  Article  Google Scholar 

  16. Rarity, J. G. & Tapster, P. R. Three-particle entanglement from entangled photon pairs and a weak coherent state. Phys. Rev. A 59, R35–R38 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Pan, J.-W., Simon, C., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    ADS  CAS  Article  Google Scholar 

  18. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    ADS  CAS  Article  Google Scholar 

  19. Bouwmeester, D. Bit-flip-error rejection in optical quantum communication. Phys. Rev. A 63, R040301 (2001)

    ADS  Article  Google Scholar 

  20. Hein, M., Eisert, J., & Briegel, H.J. Multi-party entanglement in graph states. Phys. Rev. A 69, 06231 (2004)

  21. Briegel, H. J & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    ADS  CAS  Article  Google Scholar 

  23. Kurtsiefer, C. et al. A step towards global key distribution. Nature 419, 450 (2002)

    ADS  CAS  Article  Google Scholar 

  24. De Martini, F., Buzek, V., Sciarrino, F. & Sias, C. Experimental realization of the quantum universal NOT gate. Nature 419, 815–818 (2002)

    ADS  CAS  Article  Google Scholar 

  25. Pan, J.-W., Gasparoni, S., Rupert, U., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    ADS  CAS  Article  Google Scholar 

  26. Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995)

    ADS  Article  Google Scholar 

  27. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum encoder for single-photon qubits. Phys. Rev. A 69, 042306 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  28. Zukowski, M. & Kaszlikowski, D. Critical visibility for N-particle Greenberger-Horne-Zeilinger correlations to violate local realism. Phys. Rev. A 56, R1682–R1685 (1997)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  29. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  CAS  Article  Google Scholar 

  30. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program and the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Z., Chen, YA., Zhang, AN. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004). https://doi.org/10.1038/nature02643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02643

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing