Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

De Broglie wavelength of a non-local four-photon state


Superposition is one of the most distinctive features of quantum theory and has been demonstrated in numerous single-particle interference experiments1,2,3,4. Quantum entanglement5, the coherent superposition of states in multi-particle systems, yields more complex phenomena6,7. One important type of multi-particle experiment uses path-entangled number states, which exhibit pure higher-order interference and the potential for applications in metrology and imaging8; these include quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit9,10,11,12, or quantum lithography beyond the classical diffraction limit13. It has been generally understood14 that in optical implementations of such schemes, lower-order interference effects always decrease the overall performance at higher particle numbers. Such experiments have therefore been limited to two photons15,16,17,18. Here we overcome this limitation, demonstrating a four-photon interferometer based on linear optics. We observe interference fringes with a periodicity of one-quarter of the single-photon wavelength, confirming the presence of a four-particle mode-entangled state. We anticipate that this scheme should be extendable to arbitrary photon numbers, holding promise for realizable applications with entanglement-enhanced performance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-, two- and four-photon interferometry.
Figure 2: Experimental demonstration of pure one-, two- and four- photon interference.
Figure 3: Pure four-photon interference without any two-photon interference.


  1. Marton, L., Simpson, J. A. & Suddeth, J. A. Electron beam interferometer. Phys. Rev. 90, 490–491 (1953)

    Article  ADS  CAS  Google Scholar 

  2. Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974)

    Article  ADS  CAS  Google Scholar 

  3. Keith, D. W., Ekstrom, C. R. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Arndt, M. et al. Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935)

    Article  ADS  Google Scholar 

  6. Horne, M. A. & Zeilinger, A. in Symposium on the Foundations of Modern Physics (eds Joensuu, L. P. & Mittelsted, P.) 435–439 (World Scientific Press, Singapore, 1985)

    Google Scholar 

  7. Greenberger, D., Horne, M. & Zeilinger, A. Multiparticle interferometry and the superposition principle. Phys. Today 8, 22–29 (1993)

    Article  Google Scholar 

  8. Lee, H., Kok, P. & Dowling, J. P. in Proc. Sixth Int. Conf. on Quantum Communication, Measurement and Computing (eds Shapiro, J. H. & Hirota, O.) 223–229 (Rinton Press, Princeton, 2002)

    Google Scholar 

  9. Yurke, B. Input states for enhancement of fermion interferometer sensitivity. Phys. Rev. Lett. 56, 1515–1517 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Ou, Z. Y. Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598–2609 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Holland, M. J. & Burnett, K. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Boto, A. et al. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    Article  ADS  CAS  Google Scholar 

  14. de Steuernagel, O. Broglie wavelength reduction for a multiphoton wave packet. Phys. Rev. A 65, 033820 (2002)

    Article  ADS  Google Scholar 

  15. Ou, Z. Y., Wang, L. J., Zou, X. Y. & Mandel, L. Evidence for phase memory in two-photon down conversion through entanglement with the vacuum. Phys. Rev. A 41, 566–568 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Rarity, J. G. Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990)

    Article  ADS  CAS  Google Scholar 

  17. Ou, Z. Y., Zou, X. Y., Wang, L. J. & Mandel, L. Experiment on nonclassical fourth-order interference. Phys. Rev. A 42, 2957–2965 (1990)

    Article  ADS  CAS  Google Scholar 

  18. Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)

    Article  ADS  Google Scholar 

  19. Jacobson, J., Björk, G., Chuang, I. & Yamamoto, Y. Photonic de Broglie waves. Phys. Rev. Lett. 74, 4835–4838 (2002)

    Article  ADS  Google Scholar 

  20. Fonseca, E. J. S., Monken, C. H. & Padua, S. Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Gerry, C. C. & Campos, R. A. Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A 64, 063814 (2001)

    Article  ADS  Google Scholar 

  22. Kok, P., Lee, H. & Dowling, J. Creation of large-photon number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  23. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Ou, Z. Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988)

    Article  ADS  CAS  Google Scholar 

  27. Weinfurter, H. & Zukowski, M. Four-photon entanglement from down-conversion. Phys. Rev. A 64, 010102 (2001)

    Article  ADS  Google Scholar 

  28. Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  29. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  CAS  Google Scholar 

  30. Kok, P. et al. Quantum interferometric optical lithography: Towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001)

    Article  ADS  Google Scholar 

  31. Lamas-Linares, A., Howell, J. C. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001)

    Article  ADS  CAS  Google Scholar 

Download references


We thank Č. Brukner and K. Resch for discussions, and V. Scarani for comments on the manuscript. This work was supported by the Austrian Science Foundation (FWF), the European Commission in the RAMBOQ project and by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walther, P., Pan, JW., Aspelmeyer, M. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing