A proton pore in a potassium channel voltage sensor reveals a focused electric field


Voltage-dependent potassium channels are essential for the generation of nerve impulses1. Voltage sensitivity is conferred by charged residues located mainly in the fourth transmembrane segment (S4) of each of the four identical subunits that make up the channel. These charged segments relocate when the potential difference across the membrane changes2,3, controlling the ability of the pore to conduct ions. In the crystal structure of the Aeropyrum pernix potassium channel KvAP4, the S4 and part of the third (S3B) transmembrane α-helices are connected by a hairpin turn in an arrangement termed the ‘voltage-sensor paddle’. This structure was proposed to move through the lipid bilayer during channel activation, transporting positive charges across a large fraction of the membrane5. Here we show that replacing the first S4 arginine by histidine in the Shaker potassium channel creates a proton pore when the cell is hyperpolarized. Formation of this pore does not support the paddle model, as protons would not have access to a lipid-buried histidine. We conclude that, at hyperpolarized potentials, water and protons from the internal and external solutions must be separated by a narrow barrier in the channel protein that focuses the electric field to a small voltage-sensitive region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Voltage dependence of proton currents from the R362H Shaker channel.
Figure 2: The R362H Shaker channel currents are carried by protons and are specific to histidine.
Figure 3: The R362H proton channel is distinct from the potassium channel.
Figure 4: Biophysical properties reveal the nature of the R362H proton current.
Figure 5: Proton transport and conduction: models of the conformational changes of the voltage sensor.


  1. 1

    Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    CAS  Article  Google Scholar 

  2. 2

    Seoh, S.-A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 Segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    CAS  Article  Google Scholar 

  4. 4

    Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Starace, D. M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Perozo, E., MacKinnon, R., Bezanilla, F. & Stefani, E. Gating currents from a non-conducting mutant reveal open–closed conformations in Shaker K+ channels. Neuron 11, 353–358 (1993)

    CAS  Article  Google Scholar 

  9. 9

    Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Olcese, R., Latorre, R., Toro, L., Bezanilla, F. & Stefani, E. Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J. Gen. Physiol. 110, 579–590 (1997)

    CAS  Article  Google Scholar 

  11. 11

    Gross, A. & MacKinnon, R. Agitoxin footprinting the Shaker potassium channel pore. Neuron 16, 399–406 (1996)

    CAS  Article  Google Scholar 

  12. 12

    Lee, Y. W. Statistical Theory of Communication (Wiley, New York, 1960)

    Google Scholar 

  13. 13

    Stevens, C. F. Inferences about membrane properties from electrical noise measurements. Biophys. J. 12, 1028–1047 (1972)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Conti, F., Neumcke, B., Nonner, W. & Stampfli, R. Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibers. J. Physiol. (Lond.) 308, 217–239 (1980)

    CAS  Article  Google Scholar 

  15. 15

    Sigworth, F. J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (Lond.) 307, 97–129 (1980)

    CAS  Article  Google Scholar 

  16. 16

    Cherny, V. V., Murphy, R., Sokolov, V., Levis, R. A. & DeCoursey, T. E. Properties of single voltage-gated proton channels in human eosiniphils estimated by noise analysis and by direct measurement. J. Gen. Physiol. 121, 615–627 (2003)

    CAS  Article  Google Scholar 

  17. 17

    Schumaker, M. F., Pomès, R. & Roux, B. A. Combined molecular dynamics and diffusion model of single proton conduction through gramicidin. Biophys. J. 79, 2840–2857 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117, 69–89 (2001)

    CAS  Article  Google Scholar 

  19. 19

    Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467–481 (2003)

    CAS  Article  Google Scholar 

  23. 23

    DeCoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. & Jan, L. Y. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331, 137–142 (1988)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989)

    CAS  Article  Google Scholar 

  26. 26

    Timpe, L. C. et al. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331, 143–145 (1988)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Stefani, E. & Bezanilla, F. The cut-open oocyte voltage clamp technique. Methods Enzymol. 293, 300–318 (1998)

    CAS  Article  Google Scholar 

  28. 28

    Hamill, O. P., Marty, A., Neher, E., Sackmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981)

    CAS  Article  Google Scholar 

  29. 29

    Park, C.-S., Hausdorff, S. F. & Miller, C. Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels. Proc. Natl Acad. Sci. USA 88, 2046–2050 (1991)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994)

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Institutes of Health.

Author information



Corresponding author

Correspondence to Francisco Bezanilla.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Starace, D., Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004). https://doi.org/10.1038/nature02270

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.