Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor

Abstract

The ecdysteroid hormones coordinate the major stages of insect development, notably moulting and metamorphosis, by binding to the ecdysone receptor (EcR); a ligand-inducible nuclear transcription factor1,2. To bind either ligand or DNA, EcR must form a heterodimer with ultraspiracle (USP), the homologue of retinoid-X receptor3,4,5. Here we report the crystal structures of the ligand-binding domains of the moth Heliothis virescens EcR–USP heterodimer in complex with the ecdysteroid ponasterone A and with a non-steroidal, lepidopteran-specific agonist BYI06830 used in agrochemical pest control. The two structures of EcR–USP emphasize the universality of heterodimerization as a general mechanism common to both vertebrates and invertebrates. Comparison of the EcR structures in complex with steroidal and non-steroidal ligands reveals radically different and only partially overlapping ligand-binding pockets that could not be predicted by molecular modelling and docking studies6,7. These findings offer new perspectives for the design of insect-specific, environmentally safe insecticides. The concept of a ligand-dependent binding pocket in EcR provides an insight into the moulding of nuclear receptors to their ligand, and has potential applications for human nuclear receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two structures of the ligand-binding domains of EcR–USP.
Figure 2: The LBDs of EcR complexed to a steroidal and a non-steroidal ligand exhibit different and only partially overlapping ligand-binding cavities.
Figure 3: Two radically different binding modes for EcR.

Similar content being viewed by others

References

  1. Koelle, M. R. et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77 (1991)

    Article  CAS  Google Scholar 

  2. Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their biological actions. Vitam. Horm. 60, 1–73 (2001)

    CAS  Google Scholar 

  3. Yao, T.-P., Segraves, W. A., Oro, A. E., McKeown, M. & Evans, R. M. Drosphila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72 (1992)

    Article  CAS  Google Scholar 

  4. Thomas, H. E., Stunnenberg, H. G. & Stewart, A. F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362, 471–475 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Yao, T.-P. et al. Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 366, 476–479 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Wurtz, J.-M. et al. A new model for 20-hydroxyecdysone and dibenzoylhydrazine binding: A homology modeling and docking approach. Protein Sci. 9, 1073–1084 (2000)

    Article  CAS  Google Scholar 

  7. Kasuya, K. et al. Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies. J. Mol. Model. 9, 58–65 (2003)

    Article  CAS  Google Scholar 

  8. Dhadialla, T. S., Carlson, G. R. & Le, D. P. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43, 545–569 (1998)

    Article  CAS  Google Scholar 

  9. Toya, T., Fukasawa, H., Masui, A. & Endo, Y. Potent and selective partial ecdysone agonist activity of chromafenozide in Sf9 cells. Biochem. Biophys. Res. Commun. 292, 1087–1091 (2002)

    Article  CAS  Google Scholar 

  10. Gampe, R. T. Jr et al. Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell 5, 545–555 (2000)

    Article  CAS  Google Scholar 

  11. Bourguet, W. et al. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol. Cell 5, 289–298 (2000)

    Article  CAS  Google Scholar 

  12. Svensson, S. et al. Crystal structure of the heterodimeric complex of LXRα and RXRβ ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633 (2003)

    Article  CAS  Google Scholar 

  13. Billas, I. M. L., Moulinier, L., Rochel, N. & Moras, D. Crystal structure of the ligand binding domain of the ultraspiracle protein USP, the ortholog of RXRs in insects. J. Biol. Chem. 276, 7465–7474 (2001)

    Article  CAS  Google Scholar 

  14. Clayton, G. M., Peak-Chew, S. Y., Evans, R. M. & Schwabe, J. W. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc. Natl Acad. Sci. USA 98, 1549–1554 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Rochel, N., Wurtz, J.-M., Mitschler, A., Klaholz, B. P. & Moras, D. The crystal structure of the nuclear receptor of vitamin D bound to its natural ligand. Mol. Cell 5, 173–179 (2000)

    Article  CAS  Google Scholar 

  17. Henrich, V. C. & Brown, N. E. Insect nuclear receptors: A developmental and comparative perspective. Insect Biochem. Mol. Biol. 25, 881–897 (1995)

    Article  CAS  Google Scholar 

  18. Gilbert, L. I., Rybczynski, R. & Warren, J. T. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 47, 883–916 (2002)

    Article  CAS  Google Scholar 

  19. Baker, K. D., Warren, J. T., Thummel, C. S., Gilbert, L. I. & Mangelsdorf, D. J. Transcriptional activation of the Drosophila ecdysone receptor by insect and plant ecdysteroids. Insect Biochem. Mol. Biol. 30, 1037–1043 (2000)

    Article  CAS  Google Scholar 

  20. Mohammed-Ali, A. K., Chan, T.-H., Thomas, A. W., Strunz, G. M. & Jewett, B. Structure-activity relationship study of synthetic hydrazines as ecdysone agonists in the control of spruce budworm (Choristoneura fumiferana). Can. J. Chem. 73, 550–557 (1995)

    Article  CAS  Google Scholar 

  21. Hu, X., Cherbas, L. & Cherbas, P. Transcription activation by the ecdysone receptor (EcR/USP): Identification of activation functions. Mol. Endocrinol. 17, 716–731 (2003)

    Article  CAS  Google Scholar 

  22. Kumar, M. B., Fujimoto, T., Potter, D. W., Deng, Q. & Palli, S. R. A single point mutation in ecdysone receptor leads to increased ligand specificity: Implications for gene switch applications. Proc. Natl Acad. Sci. USA 99, 14710–14715 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Farnegardh, M. et al. The three dimensional structure of the liver X receptor beta reveals a flexible ligand binding pocket that can accommodate fundamentally different ligands. J. Biol. Chem. 40, 38821–38828 (2003)

    Article  Google Scholar 

  24. Arbeitman, M. N. & Hogness, D. S. Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell 101, 67–77 (2000)

    Article  CAS  Google Scholar 

  25. Egea, P. F. et al. Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand 9-cis retinoic acid. EMBO J. 19, 2592–2601 (2000)

    Article  CAS  Google Scholar 

  26. Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 55, 484–491 (1999)

    Article  CAS  Google Scholar 

  27. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  29. Greiner, E. F. et al. Functional analysis of retinoid Z receptor beta, a brain-specific nuclear orphan receptor. Proc. Natl Acad. Sci. USA 93, 10105–10110 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Potier, N. et al. Using non denaturing mass spectrometry to detect fortuitous ligands in orphan nuclear receptors. Protein Sci. 12, 725–733 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Holmwood, K. Tietjen and M. Schindler (Bayer CropScience) for providing us with BYI06830 and ponA. We thank H. Greschik, H. Gronemeyer, B. Klaholz and G. Richards for critical comments on the manuscript; Y. Brelivet and J. M. Wurtz for discussion and advice; H. Nierengarten for mass spectrometry analysis; V. Chavant, D. Rose and F. Zink for technical assistance; S. Sasorith for her help with figures; and C. Massobrio for support and encouragement. We thank the staff of the ESRF ID14 beamline (Grenoble, France) and of the French beamline BM30A (Grenoble, France) for assistance during synchrotron data collection. This work was supported by Bayer CropScience and by grants from CNRS, INSERM, the Hôpital Universitaire de Strasbourg, the Ministère de la Recherche et de la Technologie (Programme de Génomique Structurale) and EU-SPINE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Moras.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature02112_MOESM1_ESM.pdf

Supplementary Figure 4: Composed of three panels (a) electrostatic potential surface (b) dose-dependence of the transactivational activity of the wild-type and the quadruple-mutant hvEcR-LBD/hvUSP and (c) electrospray ionization mass-spectra for the wild-type and the quadruple-mutant hvEcR-LBD/hvUSP. (PDF 1611 kb)

Supplementary Figure 5: Sequence alignment of EcR-LBDs with human VDR-LBD. (DOC 34 kb)

Supplementary Table 1: Crystallographic data and the refinement statistics. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billas, I., Iwema, T., Garnier, JM. et al. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426, 91–96 (2003). https://doi.org/10.1038/nature02112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing