Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patterns of predation in a diverse predator–prey system

Abstract

There are many cases where animal populations are affected by predators and resources in terrestrial ecosystems1,2,3, but the factors that determine when one or the other predominates remain poorly understood4,5. Here we show, using 40 years of data from the highly diverse mammal community of the Serengeti ecosystem, East Africa, that the primary cause of mortality for adults of a particular species is determined by two factors—the species diversity of both the predators and prey and the body size of that prey species relative to other prey and predators. Small ungulates in Serengeti are exposed to more predators, owing to opportunistic predation, than are larger ungulates; they also suffer greater predation rates, and experience strong predation pressure. A threshold occurs at prey body sizes of 150 kg, above which ungulate species have few natural predators and exhibit food limitation. Thus, biodiversity allows both predation (top-down) and resource limitation (bottom-up) to act simultaneously to affect herbivore populations. This result may apply generally in systems where there is a diversity of predators and prey.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The range of weights of mammal prey consumed by carnivores of different sizes in the Serengeti ecosystem.
Figure 2: The number of mammal carnivore species that prey upon the savannah ungulates of different body sizes in Serengeti.
Figure 3: The proportion of annual adult mortality accounted for by predation in ten non-migratory ungulate populations for which data were available in the Serengeti ecosystem.
Figure 4: Densities of six ungulates in a predator removal area in northern Serengeti17,27 compared with an adjacent control in the Mara Reserve23.

References

  1. Persson, L. Trophic cascades: Abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85, 385–397 (1999)

    Article  Google Scholar 

  2. Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Sinclair, A. R. E. et al. Testing hypotheses of trophic level interactions: A boreal forest ecosystem. Oikos 89, 313–328 (2000)

    Article  Google Scholar 

  4. Polis, G. A. Why are parts of the world green: Multiple factors control productivity and the distribution of biomass. Oikos 86, 3–15 (1999)

    Article  Google Scholar 

  5. Dyer, L. A. & Letourneau, D. K. Trophic cascades in a complex terrestrial community. Proc. Natl Acad. Sci. USA 96, 5072–5076 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–424 (1960)

    Article  Google Scholar 

  7. Hunter, M. D. & Price, P. W. Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992)

    Google Scholar 

  8. Post, E., Peterson, R. O., Stenseth, N. C. & McLaren, B. E. Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Schoener, T. W. & Spiller, D. A. Devastation of prey diversity by experimentally introduced predators in the field. Nature 381, 691–694 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Sinclair, A. R. E. & Norton-Griffiths, M. (eds) Serengeti: Dynamics of an Ecosystem (Univ. Chicago Press, Chicago, 1979)

  11. Schaller, G. B. The Serengeti Lion: A Study of Predator-Prey Relations (Univ. Chicago Press, Chicago, 1972)

    Google Scholar 

  12. Bertram, B. C. R. in Serengeti: Dynamics of an Ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.) 221–248 (Univ. Chicago Press, Chicago, 1979)

    Google Scholar 

  13. Elliot, J. P., Cowan, I. McT. & Holling, C. S. Prey capture of the African lion. Can. J. Zool. 55, 1811–1828 (1977)

    Article  Google Scholar 

  14. Brashares, J. S. & Arcese, P. in The Mammals of Africa (eds Kingdon, J., Happold, D. & Butynski, T.) (Academic, London, in the press)

  15. Scheel, D. & Packer, C. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 299–314 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

  16. Hofer, H. & East, M. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 332–363 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

  17. Sinclair, A. R. E. in Serengeti: Dynamics of an Ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.) 82–103 (Univ. Chicago Press, Chicago, 1979)

    Google Scholar 

  18. Sinclair, A. R. E. Does interspecific competition or predation shape the African ungulate community? J. Anim. Ecol. 54, 899–918 (1985)

    Article  Google Scholar 

  19. Sinclair, A. R. E. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 194–219 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

  20. Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999)

    Article  Google Scholar 

  21. Kruuk, H. The Spotted Hyena: A Study of Predation and Social Behavior (Univ. Chicago Press, Chicago, 1972)

    Google Scholar 

  22. Lamprecht, J. On diet, foraging behavior and interspecific food competition of jackals in the Serengeti National Park, East Africa. Z. Saugetierk 43, 210–223 (1978)

    Google Scholar 

  23. Broten, M. D. & Said, M. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 169–193 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

  24. Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002)

    Article  Google Scholar 

  25. Dyer, L. A. & Letourneau, D. K. Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecol. Lett. 6, 60–68 (2003)

    Article  Google Scholar 

  26. Nowak, R. M. Walker's Mammals of the World (Johns Hopkins, Baltimore, 1999)

    Google Scholar 

  27. Mduma, S. A. R. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 220–230 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

  28. Jolly, G. M. Sampling methods for aerial census of wildlife populations. E. Afr. Agric. For. J. 34, 46–49 (1969)

    Article  Google Scholar 

  29. Cochran, W. G. Sampling Techniques (Wiley, New York, 1963)

    MATH  Google Scholar 

  30. Campbell, K. & Borner, M. in Serengeti II: Dynamics, Management, and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 117–145 (Univ. Chicago Press, Chicago, 1995)

    Google Scholar 

Download references

Acknowledgements

We thank the Tanzania Wildlife Research Institute and Tanzania National Parks for facilitating our research in Serengeti. We thank NSERC Canada and the National Geographic Society for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. E. Sinclair.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinclair, A., Mduma, S. & Brashares, J. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003). https://doi.org/10.1038/nature01934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01934

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing