Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star

Abstract

It has been proposed1 theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100 M), because of inefficient cooling2,3,4 of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star—HE0107–5240—was discovered5. If this is a population III star that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107–5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20–130 M when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fallback to form massive black holes. Such supernovae have been observed7. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130–300 M. We accordingly infer that the first-generation supernovae came mostly from explosions of 20–130 M stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107–5240, could form because the carbon and oxygen provided pathways for the gas to cool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elemental abundances of HE0107–5240, compared with a theoretical supernova yield.
Figure 2: The post-explosion abundance distributions for the population III 25 M model with explosion energy E51 = 0.3.
Figure 3: Elemental abundances of CS22949 - 037, compared with a theoretical supernova yield.

Similar content being viewed by others

References

  1. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Omukai, K. & Nishi, R. Formation of primordial protostars. Astrophys. J. 508, 141–150 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Nakamura, F. & Umemura, M. On the mass of population III stars. Astrophys. J. 515, 239–248 (1999)

    Article  ADS  Google Scholar 

  4. Schneider, R., Ferrara, A., Natarajan, P. & Omukai, K. First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Christlieb, N. et al. A stellar relic from the early Milky Way. Nature 419, 904–906 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yoshii, Y. Metal enrichment in the atmospheres of extremely metal-deficient dwarf stars by accretion of interstellar matter. Astron. Astrophys. 97, 280–290 (1981)

    ADS  CAS  Google Scholar 

  7. Turatto, M. et al. The peculiar type II supernova 1997D. A case for a very low 56Ni mass. Astrophys. J. 498, L129–L133 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Norris, J. E., Ryan, S. G. & Beers, T. C. Extremely metal-poor stars. VIII. High-resolution, high signal-to-noise ratio analysis of five stars with [Fe/H] < -3.5. Astrophys. J. 561, 1034–1059 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Aoki, W., Ryan, S. G., Beers, T. C. & Ando, H. The chemical composition of carbon-rich, very metal poor stars. Astrophys. J. 567, 1166–1182 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Depagne, E. et al. First stars II. Elemental abundances in the extremely metal-poor star CS 22949-037. Astron. Astrophys. 390, 187–198 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Ryan, S. G. Carbon-rich, extremely metal-poor population III stars. In CNO in the Universe (eds Charbonnel, C., Schaerer, D. & Meynet, G.) (in the press); preprint astro-ph/0211608 at 〈http://xxx.lanl.gov〉 (2002)

    Google Scholar 

  12. Fujimoto, M. Y., Ikeda, Y. & Iben, I. Jr The origin of extremely metal-poor stars and the search for population III. Astrophys. J. 529, L25–L28 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Siess, L., Livio, M. & Lattanzio, J. Structure, evolution, and nucleosynthesis of primordial stars. Astrophys. J. 570, 329–343 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Umeda, H. & Nomoto, K. Nucleosynthesis of zinc and iron peak elements in population III type II supernovae. Astrophys. J. 565, 385–404 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Hachisu, I., Matsuda, T., Nomoto, K. & Shigeyama, T. Non linear growth of Rayleigh-Taylor instabilities and mixing. Astrophys. J. 358, L57–L61 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Kifonidis, K., Plewa, T., Janka, H.-Th. & Müller, E. Nucleosynthesis and clump formation in a core-collapse supernova. Astrophys. J. 531, L123–L126 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Boothroyd, A. I. & Sackmann, I.-J. The CNO isotopes: Deep circulation in red giants and first and second dredge-up. Astrophys. J. 510, 217–231 (1999)

    Article  ADS  Google Scholar 

  18. Maeda, K. & Nomoto, K. Bipolar supernova explosions: nucleosynthesis and implication on abundances in extremely metal-poor stars. Astrophys. J. (submitted); preprint available at 〈http://xxx.lanl.gov/astro-ph/0304172〉 (2003)

  19. Audouze, J. & Silk, J. The first generation of stars: first steps toward chemical evolution of galaxies. Astrophys. J. 451, L49–L52 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Shigeyama, T. & Tsujimoto, T. Fossil imprints of the first-generation supernova ejecta in extremely metal-deficient stars. Astrophys. J. 507, L135–L139 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002)

    Article  ADS  CAS  Google Scholar 

  22. McWilliam, A., Preston, G. W., Sneden, C. & Searle, L. Spectroscopic analysis of 33 of the most metal poor stars II. Astron. J. 109, 2757–2799 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Blake, L. A. J., Ryan, S. G., Norris, J. E. & Beers, T. C. Neutron-capture elements in the Sr-rich, Ba-normal metal-poor giant CS22897-008. Nucl. Phys. A 688, 502–504 (2001)

    Article  ADS  Google Scholar 

  24. Nomoto, K., et al. Hypernovae and their nucleosynthesis. In A Massive Star Odyssey, from Main Sequence to Supernova (eds van der Hucht, K. A., Herrero, A. & Esteban, C.) (in the press); preprint astro-ph/0209064 at http://xxx.lanl.gov (2002)

    Google Scholar 

  25. Zampieri, L. et al. Peculiar, low luminosity type II supernovae: Low energy explosions in massive progenitors? Mon. Not. R. Astron. Soc. 338, 711–716 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Science, Culture, Sports and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken'ichi Nomoto.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umeda, H., Nomoto, K. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star. Nature 422, 871–873 (2003). https://doi.org/10.1038/nature01571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01571

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing