Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar

Abstract

The Crab pulsar was discovered1 by the occasional exceptionally bright radio pulses it emits, subsequently dubbed ‘giant’ pulses. Only two other pulsars are known to emit giant pulses2,3. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models—the collapse of plasma-turbulent wave packets in the pulsar magnetosphere—can account for the nanopulses we observe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A sequence of dedispersed Crab giant pulses.
Figure 2: Intensity, polarization and time structure of nanopulses.

References

  1. 1

    Staelin, D. H. & Reifenstein, E. C. III Pulsating radio sources near the Crab nebula. Science 162, 1481–1483 (1968)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Cognard, I., Shrauner, J. A., Taylor, J. H. & Thorsett, S. E. Giant radio pulses from a millisecond pulsar. Astrophys J. 457, L81–L84 (1996)

    ADS  Article  Google Scholar 

  3. 3

    Romani, R. W. & Johnston, S. Giant pulses from the millisecond pulsar B1821–24. Astrophys J. 557, L93–L96 (2001)

    ADS  Article  Google Scholar 

  4. 4

    Hankins, T. H. Microsecond intensity variations in the radio emissions from CP 0950. Astrophys J. 169, 487–491 (1971)

    ADS  Article  Google Scholar 

  5. 5

    Hankins, T. H. & Rickett, B. J. Pulsar signal processing. Meth. Comp. Phys. 14, 55–129 (Academic, New York, 1975).

  6. 6

    Sallmen, S., Backer, D. C., Hankins, T. H., Moffett, D. & Lundgren, S. Simultaneous dual-frequency observations of giant pulses from the Crab pulsar. Astrophys. J. 517, 460–471 (1999)

    ADS  Article  Google Scholar 

  7. 7

    Lundgren, S. C. et al. Giant pulses from the Crab pulsar: A joint radio and gamma-ray study. Astrophys. J. 453, 433–446 (1995)

    ADS  Article  Google Scholar 

  8. 8

    Rickett, B. J. Amplitude-modulated noise: An empirical model for the radio radiation received from pulsars. Astrophys. J. 197, 185–191 (1975)

    ADS  Article  Google Scholar 

  9. 9

    Cordes, J. M. Pulsar radiation as polarized shot noise. Astrophys. J. 210, 780–791 (1976)

    ADS  Article  Google Scholar 

  10. 10

    Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869–880 (1969)

    ADS  Article  Google Scholar 

  11. 11

    Rickett, B. J. & Cordes, J. M. in Pulsars, IAU Symp. 95 (eds Sieber, W. & Wielebinski, R.) 107–109 (Reidel, Boston, 1981)

    Book  Google Scholar 

  12. 12

    Popov, M. V. et al. Microstructure of pulsar radio pulses measured with a time resolution of 62.5 ns at 1650 MHz. Astron. Rep. 46, 206–213 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Arendt, P. N. Jr & Eilek, J. A. Pair creation in the pulsar magnetosphere. Astrophys. J. 581 (in the press)

  14. 14

    Buschauer, R. & Benford, G. General theory of coherent curvature radiation. Mon. Not. R. Astron. Soc. 177, 109–136 (1976)

    ADS  Article  Google Scholar 

  15. 15

    Asseo, E., Pelletier, G. & Sol, H. A non-linear radio pulsar emission mechanism. Mon. Not. R. Astron. Soc. 247, 529–548 (1990)

    ADS  CAS  Google Scholar 

  16. 16

    Weatherall, J. C. Modulational instability, mode conversion, and radio emission in the magnetized pair plasma of pulsars. Astrophys. J. 483, 402–413 (1997)

    ADS  Article  Google Scholar 

  17. 17

    Lyutikov, M., Blandford, R. D. & Machabeli, G. On the nature of pulsar radio emission. Mon. Not. R. Astron. Soc. 305, 338–352 (1999)

    ADS  Article  Google Scholar 

  18. 18

    Weatherall, J. C. A relativistic-plasma Compton maser. Astrophys. J. 559, 196–200 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Jenet, F. A., Anderson, S. B. & Prince, T. A. The first detection of coherent emission from radio pulsars. Astrophys. J. 558, 302–308 (2001)

    ADS  Article  Google Scholar 

  20. 20

    Cairns, I. H., Johnston, S. & Das, P. Intrinsic variability of the Vela pulsar: Lognormal statistics and theoretical implications. Astrophys. J. 563, L65–L68 (2001)

    ADS  Article  Google Scholar 

  21. 21

    Delaney, T. & Weatherall, J. C. Model for deterministic chaos in pulsar radio signals and search for attractors in the Crab and Vela pulsars. Astrophys. J. 519, 291–302 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Benford, G. Model for the microstructure emission of pulsars. Mon. Not. R. Astron. Soc. 179, 311–315 (1977)

    ADS  Article  Google Scholar 

  23. 23

    Elitzur, M. Astronomical Masers 68–71 (Kluwer, Boston, 1992)

    Book  Google Scholar 

  24. 24

    Moran, J. M. Statistical properties of the radiation fields from H2O masers. Bull. Am. Astron. Soc. 13, 508 (1981)

    ADS  Google Scholar 

  25. 25

    Zakharov, V. E. Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    ADS  Google Scholar 

  26. 26

    Goldman, M. V. Strong turbulence of plasma waves. Rev. Mod. Phys. 56, 709–735 (1984)

    ADS  Article  Google Scholar 

  27. 27

    Weatherall, J. C. Pulsar radio emission by conversion of plasma wave turbulence: Nanosecond time structure. Astrophys. J. 506, 341–346 (1998)

    ADS  Article  Google Scholar 

  28. 28

    Strohmayer, T. E., Swank, J. H. & Zhang, W. in The Active X-ray Sky: Results from BeppoSAX and RXTE (eds Scarsi, L., Bradt, H., Giommi, P. & Fiore, F.) Nucl. Phys. B (Proc. Suppl.) 69, 129 (1997).

  29. 29

    Mészáros, P. Gamma-ray bursts: Accumulating afterglow implications, progenitor clues, and prospects. Science 291, 79–84 (2001)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

T.H.H. thanks NRAO and NAIC for partial sabbatical leave support at the Green Bank and Arecibo Observatories. J.S.K. thanks NRAO for pre-doctoral support. We thank B. Driggers of TMS and LeCroy for the loan of a LeCroy LT584L oscilloscope, J. Ford at NRAO Green Bank for square-law detectors, NRAO Socorro for computer support and technical assistance, and the NSF for a research grant. The Arecibo Observatory is operated by Cornell University under a cooperative agreement with the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. H. Hankins.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hankins, T., Kern, J., Weatherall, J. et al. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature 422, 141–143 (2003). https://doi.org/10.1038/nature01477

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing