Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere

Abstract

Pulsars radiate radio signals when they rotate. However, some old pulsars often stop radiating for some periods. The underlying mechanism remains unknown, as the magnetosphere during nulling phases is hard to probe due to the absence of emission measurements. Here we report the detection and accurate polarization measurements of sporadic, weak, narrow dwarf pulses detected in the ordinary nulling state of pulsar B2111+46 via the Five-Hundred-Meter Aperture Spherical radio Telescope. Further analysis shows that their polarization angles follow the average polarization angle curve of normal pulses, suggesting no change of the magnetic-field structure in the emission region in the two emission states. Whereas radio emission of normal individual pulses is radiated by a ‘thunderstorm’ of particles produced by copious discharges in regularly formed gaps, dwarf pulses are produced by one or a few ‘raindrops’ of particles generated by pair production in a fragile gap of this near-death pulsar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FAST detection of a dwarf pulse in a series pulses of PSR B2111+46.
Fig. 2: Dwarf pulses detected in the nulling periods with very low energy.
Fig. 3: Dwarf pulses of PSR B2111+46 as a distinct population from the partial nulling and normal pulses.
Fig. 4: PA distribution of dwarf pulses compared with the data of normal pulses.
Fig. 5: Phase-resolved spectral index for two individual pulses and two dwarf pulses observed on 8 March 2022 by FAST.

Similar content being viewed by others

Data availability

Original FAST observational data are open source after the one-year protection for the high-priority usage by observers, according to the FAST data policy. The processed data presented in this paper can be download from http://zmtt.bao.ac.cn/GPPS/B2111/.

References

  1. Manchester, R. N. The shape of pulsar beams. J. Astrophys. Astron. 16, 107–117 (1995).

    Article  ADS  Google Scholar 

  2. Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969).

    ADS  Google Scholar 

  3. Ruderman, M. A. & Sutherland, P. G. Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    Article  ADS  Google Scholar 

  4. Oswald, L., Karastergiou, A. & Johnston, S. Pulsar polarimetry with the Parkes ultra-wideband receiver. Mon. Not. R. Astron. Soc. 496, 1418–1429 (2020).

    Article  ADS  Google Scholar 

  5. Backer, D. C. Pulsar nulling phenomena. Nature 228, 42–43 (1970).

    Article  ADS  Google Scholar 

  6. Ritchings, R. T. Pulsar single pulse intensity measurements and pulse nulling. Mon. Not. R. Astron. Soc. 176, 249–263 (1976).

    Article  ADS  Google Scholar 

  7. Sturrock, P. A. A model of pulsars. Astrophys. J. 164, 529 (1971).

    Article  ADS  Google Scholar 

  8. Philippov, A., Timokhin, A. & Spitkovsky, A. Origin of pulsar radio emission. Phys. Rev. Lett. 124, 245101 (2020).

    Article  ADS  Google Scholar 

  9. Chen, A. Y., Cruz, F. & Spitkovsky, A. Filling the magnetospheres of weak pulsars. Astrophys. J. 889, 69 (2020).

    Article  ADS  Google Scholar 

  10. Cruz, F., Grismayer, T., Chen, A. Y., Spitkovsky, A. & Silva, L. O. Coherent emission from QED cascades in pulsar polar caps. Astrophys. J. Lett. 919, L4 (2021).

    Article  ADS  Google Scholar 

  11. Bransgrove, A., Beloborodov, A. M. & Levin, Y. Radio emission and electric gaps in pulsar magnetospheres. Preprint at https://arxiv.org/abs/2209.11362 (2022).

  12. Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A. & Lorimer, D. R. A periodically active pulsar giving insight into magnetospheric physics. Science 312, 549–551 (2006).

    Article  ADS  Google Scholar 

  13. Lorimer, D. R. et al. Radio and X-ray observations of the intermittent pulsar J1832+0029. Astrophys. J. 758, 141 (2012).

    Article  ADS  Google Scholar 

  14. Camilo, F., Ransom, S. M., Chatterjee, S., Johnston, S. & Demorest, P. PSR J1841−0500: a radio pulsar that mostly is not there. Astrophys. J. 746, 63 (2012).

    Article  ADS  Google Scholar 

  15. Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. & Jordan, C. Long-term timing observations of 374 pulsars. Mon. Not. R. Astron. Soc. 353, 1311–1344 (2004).

    Article  ADS  Google Scholar 

  16. Davies, J. G. & Large, M. I. A single-pulse search for pulsars. Mon. Not. R. Astron. Soc. 149, 301 (1970).

    Article  ADS  Google Scholar 

  17. Mitra, D. & Li, X. H. Comparing geometrical and delay radio emission heights in pulsars. Astron. Astrophys. 421, 215–228 (2004).

    Article  ADS  Google Scholar 

  18. Zhang, H., Qiao, G. J., Han, J. L., Lee, K. J. & Wang, H. G. PSR B2111+46: a test of the inverse Compton scattering model of radio emission. Astron. Astrophys. 465, 525–531 (2007).

    Article  ADS  Google Scholar 

  19. Thomas, R. M. C. & Gangadhara, R. T. Absolute emission altitude of pulsars: PSRs B1839+09, B1916+14, and B2111+46. Astron. Astrophys. 515, A86 (2010).

    Article  ADS  Google Scholar 

  20. Gajjar, V., Joshi, B. C. & Kramer, M. A survey of nulling pulsars using the Giant Meterwave Radio Telescope. Mon. Not. R. Astron. Soc. 424, 1197–1205 (2012).

    Article  ADS  Google Scholar 

  21. Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21, 107 (2021).

    Article  ADS  Google Scholar 

  22. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. & Kramer, M. On the apparent nulls and extreme variability of PSR J1107−5907. Mon. Not. R. Astron. Soc. 442, 2519–2533 (2014).

    Article  ADS  Google Scholar 

  23. Burke-Spolaor, S. et al. The high time resolution universe pulsar survey—V. Single-pulse energetics and modulation properties of 315 pulsars. Mon. Not. R. Astron. Soc. 423, 1351–1367 (2012).

    Article  ADS  Google Scholar 

  24. Cognard, I., Shrauner, J. A., Taylor, J. H. & Thorsett, S. E. Giant radio pulses from a millisecond pulsar. Astrophys. J. Lett. 457, L81 (1996).

    Article  ADS  Google Scholar 

  25. Rickett, B. J., Hankins, T. H. & Cordes, J. M. The radio spectrum of micropulses from pulsar PSR 0950+08. Astrophys. J. 201, 425–430 (1975).

    Article  ADS  Google Scholar 

  26. Soglasnov, V. A. et al. Giant pulses from PSR B1937+21 with widths <=15 nanoseconds and Tb >= 5 × 1039 K, the highest brightness temperature observed in the Universe. Astrophys. J. 616, 439–451 (2004).

    Article  ADS  Google Scholar 

  27. Cheng, A. F. & Ruderman, M. A. A theory of subpulse polarization patterns from radio pulsars. Astrophys. J. 229, 348–360 (1979).

    Article  ADS  Google Scholar 

  28. Wang, C., Lai, D. & Han, J. Polarization changes of pulsars due to wave propagation through magnetospheres. Mon. Not. R. Astron. Soc. 403, 569–588 (2010).

    Article  ADS  Google Scholar 

  29. Beskin, V. S. & Philippov, A. A. On the mean profiles of radio pulsars—I. Theory of propagation effects. Mon. Not. R. Astron. Soc. 425, 814–840 (2012).

    Article  ADS  Google Scholar 

  30. Srostlik, Z. & Rankin, J. M. Core and conal component analysis of pulsar B1237+25. Mon. Not. R. Astron. Soc. 362, 1121–1133 (2005).

    Article  ADS  Google Scholar 

  31. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. & Kramer, M. Long-term observations of three nulling pulsars. Mon. Not. R. Astron. Soc. 449, 1495–1504 (2015).

    Article  ADS  Google Scholar 

  32. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005).

    Article  ADS  Google Scholar 

  33. van Straten, W. & Bailes, M. DSPSR: Digital signal processing software for pulsar astronomy. Publ. Astron. Soc. Aust. 28, 1–14 (2011).

    Article  ADS  Google Scholar 

  34. Wang, P. F. et al. FAST pulsar database: I. polarization profiles of 682 pulsars. Res. Astron. Astrophys. 23, 104002 (2023).

    Article  ADS  Google Scholar 

  35. Hotan, A. W., van Straten, W. & Manchester, R. N. Psrchive and psrfits: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).

    Article  ADS  Google Scholar 

  36. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope. Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015).

    Article  ADS  Google Scholar 

  37. Lyne, A. G. & Manchester, R. N. The shape of pulsar radio beams. Mon. Not. R. Astron. Soc. 234, 477–508 (1988).

    Article  ADS  Google Scholar 

  38. Gould, D. M. & Lyne, A. G. Multifrequency polarimetry of 300 radio pulsars. Mon. Not. R. Astron. Soc. 301, 235–260 (1998).

    Article  ADS  Google Scholar 

  39. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope. Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015).

    Article  ADS  Google Scholar 

  40. Rankin, J. M. Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. Astrophys. J. 405, 285 (1993).

    Article  ADS  Google Scholar 

  41. Radhakrishnan, V. & Rankin, J. M. Toward an empirical theory of pulsar emission. V. On the circular polarization in pulsar radiation. Astrophys. J. 352, 258 (1990).

    Article  ADS  Google Scholar 

  42. Han, J. L., Manchester, R. N., Xu, R. X. & Qiao, G. J. Circular polarization in pulsar integrated profiles. Mon. Not. R. Astron. Soc. 300, 373–387 (1998).

    Article  ADS  Google Scholar 

  43. Gangadhara, R. T., Han, J. L. & Wang, P. F. Coherent curvature radio emission and polarization from pulsars. Astrophys. J. 911, 152 (2021).

    Article  ADS  Google Scholar 

  44. Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144−3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000).

    Article  ADS  Google Scholar 

  45. Chen, K. & Ruderman, M. Pulsar death lines and death valley. Astrophys. J. 402, 264 (1993).

    Article  ADS  Google Scholar 

  46. Weltevrede, P., Wright, G. A. E., Stappers, B. W. & Rankin, J. M. The bright spiky emission of pulsar B0656+14. Astron. Astrophys. 458, 269–283 (2006).

    Article  ADS  Google Scholar 

  47. Burke-Spolaor, S. & Bailes, M. The millisecond radio sky: transients from a blind single-pulse search. Mon. Not. R. Astron. Soc. 402, 855–866 (2010).

    Article  ADS  Google Scholar 

  48. Esamdin, A., Abdurixit, D., Manchester, R. N. & Niu, H. B. PSR B0826−34: sometimes a rotating radio transient. Astrophys. J. Lett. 759, L3 (2012).

    Article  ADS  Google Scholar 

  49. Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  50. Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar caps: structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979).

    Article  ADS  Google Scholar 

  51. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. I. Outer magnetosphere gaps. Astrophys. J. 300, 500 (1986).

    Article  ADS  Google Scholar 

  52. Qiao, G. J., Lee, K. J., Wang, H. G., Xu, R. X. & Han, J. L. The inner annular gap for pulsar radiation: γ-ray and radio emission. Astrophys. J. Lett. 606, L49–L52 (2004).

    Article  ADS  Google Scholar 

  53. Muslimov, A. G. & Harding, A. K. High-altitude particle acceleration and radiation in pulsar slot gaps. Astrophys. J. 606, 1143–1153 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work made use of data from FAST. FAST is a Chinese national mega-science facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. The authors of this work have been supported by the Natural Science Foundation of China: numbers 11988101 and 11833009 and National SKA Program of China 2020SKA0120100.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and Y.Y. processed all related data and noticed the dwarf pulses, and they contributed to this paper equally. J.L.H. supervised and coordinated the team work, pursued the nature of the dwarf pulses and took the responsibility for paper writing. P.F.W., C.W., W.C.J. and D.J.Z. contributed to different aspects of data processing. T.W., W.Y.W., Z.L.Y., W.Q.S., N.N.C., J.X., R.X.X., K.J.L., G.J.Q. and B.Z. joined the discussions and contributed to some parts of paper writing or plot-making.

Corresponding author

Correspondence to J. L. Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ashley Bransgrove and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The pulses of PSR B2111+46 observed by FAST in the session on 2020-08-24.

The left-most panel is the train of individual pulses for 886 periods, with the mean profile shown in the bottom and the intensity of which is normalized using the peak value. The total energy of every individual pulse is plotted in the immediately right, so that the energy fluctuations are seen very clearly which show the two predominate peaks for both nulling and emission states in the number distributions in the bottom. A segment of the pulse stack is shown in grey for high quality individual pulses, with significant fluctuations of profile amplitude, in which normal individual pulses can be seen in the period No. 702-700, 696 and 680, partial nulling in the period No. 679, and dwarf pulses of the period No. 699 and 682. The detailed polarization profiles for 4 pulses are presented in the right 4 panels, each with total intensity I, linear polarization L and circular polarization V in the bottom subpanel and P A in the upper subpanel. The polarization profiles of the mean pulse are shown in dashed line in these subpanels for comparison. The error bar for PA is ± 1σ.

Extended Data Fig. 2 The pulses of PSR B2111+46 observed by FAST in the session on 2020-08-26.

The left-most panel is the train of individual pulses for 886 periods, with the mean profile shown in the bottom and the intensity of which is normalized using the peak value. The total energy of every individual pulse is plotted in the immediately right. A segment of the pulse stack is shown in grey for high quality individual pulses, with a dwarf pulse in the period No. 377 and partial nulling in the period No. 365. The detailed polarization profiles for 4 pulses are presented in the right 4 panels, each with total intensity I, linear polarization L and circular polarization V in the bottom subpanel and P A in the upper subpanel. The polarization profiles of the mean pulse are shown in dashed line in these subpanels for comparison. The error bar for PA is ± 1σ.

Extended Data Fig. 3 The pulses of PSR B2111+46 observed by FAST in the session on 2020-09-17.

The left-most panel is the train of individual pulses for 885 periods, with the mean profile shown in the bottom and the intensity of which is normalized using the peak value. The total energy of every individual pulse is plotted in the immediately right. A segment of the pulse stack is shown in grey for high quality individual pulses, with a dwarf pulse in the period No. 136 and partial nulling in the period No. 137. The detailed polarization profiles for 4 pulses are presented in the right 4 panels, each with total intensity I, linear polarization L and circular polarization V in the bottom subpanel and P A in the upper subpanel. The polarization profiles of the mean pulse are shown in dashed line in these subpanels for comparison. The error bar for PA is ± 1σ.

Extended Data Fig. 4 The pulses of PSR B2111+46 observed by FAST in the session on on 2022-03-08.

The left-most panel is the train of individual pulses for 7098 periods, with the mean profile shown in the bottom and the intensity of which is normalized using the peak value. The total energy of every individual pulse is plotted in the immediately right. A segment of the pulse stack is shown in grey for high quality individual pulses, with a dwarf pulse in period of No.5895 and two partial nullings in the period No. 5891 and 5897. The detailed polarization profiles for 4 pulses are presented in the right 4 panels, each with total intensity I, linear polarization L and circularpolarization V in the bottom subpanel and P A in the upper subpanel. The polarization profiles of the mean pulse are shown in dashed line in these subpanels for comparison. The error bar for PA is ± 1σ.

Extended Data Fig. 5 Examples of polarization profiles for two dwarf pulses and two strong individual pulses in high time resolution.

All of them are observed on 2022-03-08 by FAST with time resolution of 49.152 μs. Polarization profiles for two strong individual pulses are shown for their elongated central part in the next panel. Each rip in the profiles is real, well-significant above the noise fluctuations. These unrepresented details indicate that the observed individual pulses are an incoherent collection of many elementary pulses generated separately in the magnetosphere. The error bar for PA is ± 1σ. The intensity is scaled with the off-pulse fluctuations expressed by σbin.

Extended Data Fig. 6 Longitude distribution of dwarf pulses.

Longitude distribution of dwarf pulse locations are compared to the mean pulse profile indicated by the dash line. The bar length stands for dwarf pulse width, and the dots mark the peak locations in the longitude.

Extended Data Fig. 7 Pulsar period and period derivative (\({{{\rm{P}}}}-\dot{{{{\rm{P}}}}}\)) diagram and the location of PSR B2111+46 in the death valley.

The death lines are given for the curvature radiation in a dipole field (upper one) and an extremely curved field (lower one) in the vacuum gap model (sold lines) and the space- charged-limited flow model (dashed lines) given in44. All pulsar data are taken from the ATNF pulsar Catalogue32 (version 1.70). The background gray dashed and dotted lines stand for constant surface magnetic field strengths and characteristic ages, respectively.

Extended Data Fig. 8 Distributions for spectral indexes of three kinds of individual pulses.

All these pulses, including 5175 normal pulses, 199 partial nulling pulses and 67 dwarf pulses, are observed by FAST on 2022-03-08. The indexes are calculated for each individual pulse by using the on-pulse integrated intensity, and have an uncertainty less than 0.5.

Extended Data Fig. 9 The number distribution of phase-resolved spectral indexes.

Data of spectral indexes of all phase bins have an uncertainty less than 0.5 for all individual pulses observed by FAST on 2022-03-08, as shown in the upper subpanel, together with the mean polarization profile for understanding in the lower subpanel scaled with the peak value.

Extended Data Fig. 10 The phase shift distribution of polarization angles of 62 dwarf pulses.

The shift values are obtained by comparison of their PA to the mean PA curve at the longitude of dwarf pulses.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yan, Y., Han, J.L. et al. Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere. Nat Astron 7, 1235–1244 (2023). https://doi.org/10.1038/s41550-023-02056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02056-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing