Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-distance teleportation of qubits at telecommunication wavelengths

Abstract

Matter and energy cannot be teleported (that is, transferred from one place to another without passing through intermediate locations). However, teleportation of quantum states (the ultimate structure of objects) is possible1: only the structure is teleported—the matter stays at the source side and must be already present at the final location. Several table-top experiments have used qubits2,3,4,5,6,7 (two-dimensional quantum systems) or continuous variables8,9,10 to demonstrate the principle over short distances. Here we report a long-distance experimental demonstration of probabilistic quantum teleportation. Qubits carried by photons of 1.3 µm wavelength are teleported onto photons of 1.55 µm wavelength from one laboratory to another, separated by 55 m but connected by 2 km of standard telecommunications fibre. The first (and, with foreseeable technologies, the only) application of quantum teleportation is in quantum communication, where it could help to extend quantum cryptography to larger distances11,12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Space–time diagram of a general quantum teleportation scheme.
Figure 2: Principle of preparation and measurement of time-bin qubits.
Figure 3: Experimental set-up.
Figure 4: Experimental results.
Figure 5: Quantum teleportation used as a quantum relay.

References

  1. 1

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. 3

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lombardi, E., Sciarrino, F., Popescu, S. & De Martini, F. Teleportation of a vacuum–one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002)

    ADS  Article  Google Scholar 

  7. 7

    Jennewein, T., Weihs, G., Pan, J.-W. & Zeilinger, A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Babichev, S. A., Ries, J., Lvovsky, A. I. Quantum scissors: teleportation of single-mode optical states by mean of a nonlocal single photon. Preprint quant-ph/0208066 at 〈http://xxx.lanl.gov〉 (2002).

  10. 10

    Bowen, W. P. et al. Experimental investigation of continuous variable quantum teleportation. Preprint quant-ph/0207179 at 〈http://xxx.lanl.gov〉 (2002).

  11. 11

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Article  Google Scholar 

  12. 12

    Waks, E., Zeevi, A. & Yamamoto, Y. Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev A 65, 052310 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Briegel, H.-J., Dur, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  18. 18

    Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tittel, W. & Weihs, G. Photonic entanglement for fundamental tests and quantum communication. Quant. Inf. Comput. 1, 3–56 (2001)

    Google Scholar 

  21. 21

    Brendel, J., Tittel, W., Zbinden, H. & Gisin, N. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Thew, R. T., Tanzilli, S., Tittel, W., Zbinden, H. & Gisin, N. Experimental investigation of the robustness of partially entangled photons over 11 km. Phys. Rev. A. 66, 062304 (2002)

    ADS  Article  Google Scholar 

  23. 23

    De Riedmatten, H., Marcikiç, I., Tittel, W., Zbinden, H. & Gisin, N. Quantum interferences with photon pairs created in spatially separated sources. Phys. Rev. A (in the press); preprint quant-ph/0208174 at 〈http://xxx.lanl.gov〉 (2002).

  24. 24

    Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Femtosecond time-bin entangled qubits for quantum communication. Phys. Rev. A 66, 062308 (2002)

    ADS  Article  Google Scholar 

  25. 25

    Lamas-Linares, A., Howell, J. C. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Owens, P. C. M., Rarity, J. G., Tapster, P. R., Knight, D. & Townsend, P. D. Photon counting with passively quenched germanium avalanche. Appl. Opt. 33, 6895–6901 (1994)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Stucki, D., Ribordy, G., Stefanov, A. & Zbinden, H. Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD's. J. Mod. Opt. 48, 1967–1981 (2001)

    ADS  Article  Google Scholar 

  28. 28

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  29. 29

    Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000)

    ADS  CAS  Article  Google Scholar 

  30. 30

    De Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Creating high dimensional entanglement using mode-locked laser. Quant. Inf. Comput. 2, 425–433 (2002)

    MATH  Google Scholar 

  31. 31

    Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Legré for discussions, and C. Barreiro and J.-D. Gautier for technical support. Financial support by the Swiss OFES and NSF within the framework of the European IST project Qucomm and the Swiss National Center for Quantum Photonics is acknowledged. W.T. acknowledges support from the ESF Programme Quantum Information Theory and Quantum Computation (QIT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Gisin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marcikic, I., de Riedmatten, H., Tittel, W. et al. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003). https://doi.org/10.1038/nature01376

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing