Abstract
The bacterial AlkB protein is known to be involved in cellular recovery from alkylation damage; however, the function of this protein remains unknown. AlkB homologues have been identified in several organisms, including humans, and a recent sequence alignment study has suggested that these proteins may belong to a superfamily of 2-oxoglutarate-dependent and iron-dependent oxygenases (2OG-Fe(ii)-oxygenases)1. Here we show that AlkB from Escherichia coli is indeed a 2-oxoglutarate-dependent and iron-dependent DNA repair enzyme that releases replication blocks in alkylated DNA by a mechanism involving oxidative demethylation of 1-methyladenine residues. This mechanism represents a new pathway for DNA repair and the third type of DNA damage reversal mechanism so far discovered.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential
Journal of Hematology & Oncology Open Access 21 January 2022
-
The exploration of N6-deoxyadenosine methylation in mammalian genomes
Protein & Cell Open Access 17 August 2021
-
DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy
Signal Transduction and Targeted Therapy Open Access 09 July 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
Aravind, L. & Koonin, E. V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2, 0007.1–0007.8 (2001)
Pegg, A. E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100 (2000)
Evensen, G. & Seeberg, E. Adaptation to alkylation resistance involves the induction of a DNA glycosylases. Nature 296, 773–775 (1982)
Karran, P., Hjelmgren, T. & Lindahl, T. Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296, 770–773 (1982)
Karran, P., Lindahl, T. & Griffin, B. Adaptive response to alkylating agents involves alternation in situ of O6-methylguanine residues in DNA. Nature 280, 76–77 (1979)
Kataoka, H., Yamamoto, Y. & Sekiguchi, M. A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J. Bacteriol. 153, 1301–1307 (1983)
Wei, Y. F., Carter, K. C., Wang, R. P. & Shell, B. K. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res. 24, 931–937 (1996)
Dinglay, S., Trewick, S. C., Lindahl, T. & Sedgwick, B. Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev. 14, 2097–2105 (2000)
Parkinson, A. Casarett and Doull's Toxicology (ed. Claassen, C. D.) 113–186 (McGraw-Hill, New York, 1996)
Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416–421 (1953)
Rapoport, R., Hanukoglu, I. & Sklan, D. A fluorimetric assay for hydrogen peroxide, suitable for NAD(P)H-dependent superoxide generating redox systems. Anal. Biochem. 218, 309–313 (1994)
Chen, B. J., Carroll, P. & Samson, L. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J. Bacteriol. 176, 6255–6261 (1994)
Singer, B. & Grunberger, D. Molecular Biology of Mutagens and Carcinogens (Plenum, New York, 1983)
Amersham Pharmacia Biotech GST Gene Fusion System: User Manual; (1997) 〈www.amershambiosciences.com〉
Bjelland, S., Bjørås, M. & Seeberg, E. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res. 21, 2045–2049 (1993)
Wang, G., Rahman, M. S. & Humayun, M. Z. Replication of M13 single-stranded viral DNA bearing single site-specific adducts by Escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions. Biochemistry 36, 9486–9492 (1997)
Palejwala, V. A., Simha, D. & Humayun, M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion. Biochemistry 30, 8736–8743 (1991)
Chung, C. T., Niemela, S. L. & Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl Acad. Sci. USA 86, 2172–2175 (1989)
Hofer, T. & Moller, L. Reduction of oxidation during the preparation of DNA and analysis of 8-hydroxy-2′-deoxyguanosine. Chem. Res. Toxicol. 11, 882–887 (1998)
Acknowledgements
We thank M. Bjørås, L. Eide, K. Baynton, K. I. Kristiansen, J. Myllyharju, K. Skarstad and J. Klaveness for help and discussions, and L. Eide, K. Baynton and A. Klungland for critical reading of the manuscript. We are grateful to M. Bjørås for preparation of [3H]MNU-labelled DNA substrates, to L. Eide for the construction of the plasmid for expression of GST–AlkB, and to D. Daoudi for technical assistance. This work was supported by the Research Council of Norway and the Norwegian Cancer Society. E.S. also acknowledges support from the European Commission.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Falnes, P., Johansen, R. & Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419, 178–182 (2002). https://doi.org/10.1038/nature01048
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01048
Further reading
-
RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential
Journal of Hematology & Oncology (2022)
-
Interactions between HIV protease inhibitor ritonavir and human DNA repair enzyme ALKBH2: a molecular dynamics simulation study
Molecular Diversity (2022)
-
ALKBH4 promotes tumourigenesis with a poor prognosis in non-small-cell lung cancer
Scientific Reports (2021)
-
ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing
Nature Cell Biology (2021)
-
DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy
Signal Transduction and Targeted Therapy (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.