Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination


Among the various applications for reversible holographic storage media1,2, a particularly interesting one is time-gated holographic imaging (TGHI)3,4,5. This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography6,7. In this technique, biological samples are illuminated within their transparency window with near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material—a composite based on the poly(arylene vinylene) copolymer TPD-PPV8—that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Holographic recording dynamics of the TPD-PPV-based composite for different gate intensities and chemical structure of TPD-PPV.
Figure 2: Illustration of the gating mechanism.
Figure 3: Gated holographic recording dynamics of the TPD-PPV-based composite for different write rates and write intensities.


  1. Burr, G. W. & Leyva, I. Multiplexed phase-conjugate holographic data storage with a buffer hologram. Opt. Lett. 25, 499–501 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Stepanov, S. in Handbook of Advanced Electronic and Photonic Materials and Devices Ch. 6 (ed. Nalva, H. S.) Vol. 2 (Academic, New York, 2001)

    Google Scholar 

  3. Hyde, S. C. W. et al. Depth-resolved holographic imaging through scattering media by photorefraction. Opt. Lett. 20, 1331–1334 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Jones, R. et al. Holographic storage and high background imaging using photorefractive multiple quantum wells. Appl. Phys. Lett. 69, 1837–1839 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Steele, D. D. et al. Transillumination imaging through scattering media by use of photorefractive polymers. Opt. Lett. 23, 153–155 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1123 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Hörhold, H. H. et al. Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices. Proc. SPIE 4105, 431–442 (2001)

    Article  ADS  Google Scholar 

  9. Moerner, W. E., Grunnet-Jepsen, A. & Thompson, C. L. Photorefractive polymers. Annu. Rev. Mater. Sci. 27, 585–623 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Zilker, S. Materials design and physics of organic photorefractive systems. ChemPhysChem 1, 72–87 (2000)

    Article  CAS  Google Scholar 

  11. Kukhtarev, N. V., Markov, V. B., Odulov, S. G., Soskin, M. S. & Vinetskii, V. L. Holographic storage in electrooptic crystals. I. Steady state. Ferroelectrics 22, 949–960 (1979)

    Article  CAS  Google Scholar 

  12. Moerner, W. E., Silence, S. M., Hache, F. & Bjorklund, G. C. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. 11, 320–330 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Wortmann, R. et al. Design of optimized photorefractive polymers: A novel class of chromophores. J. Chem. Phys. 105, 10637–10647 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Ashley, J. et al. Holographic data storage. IBM J. Res. Dev. 44, 341–367 (2000)

    Article  CAS  Google Scholar 

  15. Würthner, F., Wortmann, R. & Meerholz, K. Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002)

    Article  Google Scholar 

  16. Silence, S. M., Bjorklund, G. C. & Moerner, W. E. Optical trap activation in a photorefractive polymer. Opt. Lett. 19, 1822–1824 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Herlocker, J. A. et al. Stabilization of the response time in photorefractive polymers. Appl. Phys. Lett. 77, 2292–2294 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Wolff, J., Schloter, S., Hofmann, U., Haarer, D. & Zilker, S. Speed enhancement of photorefractive polymers by means of light-induced filling of trapping states. J. Opt. Soc. Am. B 16, 1080–1086 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Buse, K., Adibi, A. & Psaltis, D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Günther, H., Macfarlane, R., Furukawa, Y., Kitamura, K. & Neurgaonkar, R. Two-color holography in reduced near-stoichiometric lithium niobate. Appl. Opt. 73, 7611–7623 (1998)

    Article  ADS  Google Scholar 

  21. Grunnet-Jepsen, A. Spectroscopic determination of trap density in C60-sensitized photorefractive polymers. Chem. Phys. Lett. 291, 553–561 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Wang, L., Ng, M.-K. & Yu, L. Photorefraction and complementary grating competition in bipolar transport molecular material. Phys. Rev. B. 62, 4973–4984 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Zilker, S. J. & Hofmann, U. Organic photorefractive glass with infrared sensitivity and fast response. Appl. Opt. 39, 2287–2290 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Wang, L., Ng, M. K. & Yu, L. Efficient molecular photorefractive materials based on methine dyes. Appl. Phys. Lett. 78, 700–702 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Steenwinckel, D. V., Hendrickx, E., Persoons, A., Van den Broeck, K. & Samyn, C. Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly-N-vinylcarbazole based polymer composites. J. Chem. Phys. 112, 11030–11037 (2000)

    Article  ADS  Google Scholar 

  26. Kippelen, B. et al. Infrared photorefractive polymers and their applications for imaging. Science 279, 54–57 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Boppart, S. A. et al. In vivo cellular optical coherence tomography imaging. Nature Med. 4, 861–865 (1998)

    Article  CAS  Google Scholar 

  28. Hummelen, J. C. et al. Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995)

    Article  CAS  Google Scholar 

Download references


We thank R. Bittner, D. Müller, M. Hofmann and R. Birngruber for discussions. Financial support was granted by the Volkswagen Foundation (Germany), the European Space Agency (MAP-project), the Fonds der Chemischen Industrie (Germany), and the Bavarian government through ‘Neue Werkstoffe’ (Germany).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Klaus Meerholz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mecher, E., Gallego-Gómez, F., Tillmann, H. et al. Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing