Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photophysical properties of materials for high-speed photodetection

Abstract

Fast-response optical sensing across the electromagnetic spectrum is an enabler of quantum systems, 3D machine vision and augmented reality, yet existing technologies are not optimized for infrared sensing. Trade-offs among characteristics such as speed, efficiency, noise, spectral detection range and cost motivate the research community to develop nanostructured sensing materials that provide operation from visible to infrared wavelengths with seamless integration. As efforts are made to advance the combined gain and bandwidth of devices, a clear understanding of physical mechanisms underlying the dynamics of charge carriers, with a particular focus on speed-limiting processes, is of high priority. In this Review, we provide an account of the photophysical attributes of active materials and their impact on optical sensor performance, focusing on the interplay between temporal and peak response to pulsed light of varying durations. We identify performance-limiting processes and directions for future progress in developing materials and device architectures that realize high-speed photodetection.

Key points

  • The dark-current–speed–efficiency triangle, a principal performance measure for photodetectors, now places a higher emphasis on detection bandwidth, a key metric for a range of emerging applications.

  • In pulsed detection, unlike continuous light detection, the peak response depends on the photodetector’s response time; a slower detector results in a reduced peak response.

  • Response and recovery time represent distinct aspects of speed within the characteristics of a photodetector. They originate from the intricate relationship between photophysical properties, affecting the temporal dynamics of charge-carrier transport and collection.

  • Transport and capacitance are the main limiting regimes for response time, mainly determined by the mobility of charge carriers and the dielectric constant of the active material.

  • Improvement of recovery time requires a detailed investigation of the sources of charge trap states, characterized by their energy depth, distribution and total density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Connections between the performance of photodetectors and the photophysical characteristics of electronic materials.
Fig. 2: PR in pulsed light detection.
Fig. 3: Transport-limited versus capacitance-limited response time.
Fig. 4: Trap-dictated RT.

Similar content being viewed by others

References

  1. Eng, P. C., Song, S. & Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 4, 277–302 (2015).

    Article  Google Scholar 

  2. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article  Google Scholar 

  3. Moody, G. et al. Roadmap on integrated quantum photonics. J. Phys. Photonics 4, 012501 (2022).

    Article  ADS  Google Scholar 

  4. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  5. Li, N. et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser Photonics Rev. 16, 2100511 (2022).

    Article  ADS  Google Scholar 

  6. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  ADS  Google Scholar 

  7. Huseynzada, K., Sadigov, A. & Naghiyev, J. in 4th Int. Conf. Artificial Intelligence Applied Mathematics Engineering (eds Hemanth, D. J. et al.) 680–690 (Springer, 2023).

  8. Goossens, S., Konstantatos, G. & Oikonomou, A. Colloidal quantum dot image sensors: technology and marketplace opportunities. Inf. Disp. 37, 18–23 (2021).

    Google Scholar 

  9. Lee, J. et al. Imaging in short-wave infrared with 1.82 μm pixel pitch quantum dot image sensor (IEDM, 2020).

  10. Gregory, C., Hilton, A., Violette, K. & Klem, E. J. D. Colloidal quantum dot photodetectors for large format NIR, SWIR, and ESWIR imaging arrays. SID Int. Symp. Dig. Tech. Pap. 52, 982–986 (2021).

    Article  Google Scholar 

  11. Jiang, Y., Karpf, S. & Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics 14, 14–18 (2020).

    Article  Google Scholar 

  12. Li, N., Hu, X., Sui, X., Chen, Q. & Ng, T. N. Infrared light detection technology based on organics. ACS Appl. Electron. Mater. 5, 21–33 (2023).

    Article  Google Scholar 

  13. Shan, T., Hou, X., Yin, X. & Guo, X. Organic photodiodes: device engineering and applications. Front. Optoelectron. 15, 49 (2022).

    Article  Google Scholar 

  14. Wang, Y. et al. Narrowband organic photodetectors — towards miniaturized, spectroscopic sensing. Mater. Horiz. 9, 220–251 (2022).

    Article  Google Scholar 

  15. Ren, H., Chen, J. D., Li, Y. Q. & Tang, J. X. Recent progress in organic photodetectors and their applications. Adv. Sci. 8, 2002418 (2021).

    Article  Google Scholar 

  16. Liu, J. et al. Challenges and recent advances in photodiodes-based organic photodetectors. Mater. Today 51, 475–503 (2021).

    Article  ADS  Google Scholar 

  17. Xu, Q. et al. Ultrafast colloidal quantum dot infrared photodiode. ACS Photonics 7, 1297–1303 (2020).

    Article  Google Scholar 

  18. Vafaie, M. et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm. Matter 4, 1042–1053 (2021).

    Article  Google Scholar 

  19. Nakotte, T. et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field. J. Mater. Chem. C 10, 790–804 (2022).

    Article  Google Scholar 

  20. Morteza Najarian, A. et al. Sub-millimetre light detection and ranging using perovskites. Nat. Electron. 5, 511–518 (2022).

    Article  Google Scholar 

  21. Kufer, D. & Konstantatos, G. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 3, 2197–2210 (2016).

    Article  Google Scholar 

  22. Khan, S. et al. 2D heterostructures for highly efficient photodetectors: from advanced synthesis to characterizations, mechanisms, and device applications. Adv. Photonics Res. 3, 2100342 (2022).

    Article  Google Scholar 

  23. Liu, C. et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl. 10, 123 (2021).

    Article  ADS  Google Scholar 

  24. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  Google Scholar 

  25. Sun, B. et al. Fast near-infrared photodetection using III–V colloidal quantum dots. Adv. Mater. 34, 2203039 (2022).

    Article  Google Scholar 

  26. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018).

    Article  ADS  Google Scholar 

  27. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  28. Giordani, T., Hoch, F., Carvacho, G., Spagnolo, N. & Sciarrino, F. Integrated photonics in quantum technologies. Riv. Nuovo Cimento 46, 71–103 (2023).

    Article  Google Scholar 

  29. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  30. Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12, 175 (2023).

    Article  ADS  Google Scholar 

  31. Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).

    Article  ADS  Google Scholar 

  32. Fang, H., Hu, W., Fang, H. & Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017).

    Article  Google Scholar 

  33. Shi, J., Li, D., Luo, Y., Wu, H. & Meng, Q. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells. Rev. Sci. Instrum. 87, 123107 (2016).

    Article  ADS  Google Scholar 

  34. Gong, S. et al. Ultrafast dynamics in perovskite-based optoelectronic devices. Cell Rep. Phys. Sci. 4, 101580 (2023).

    Article  Google Scholar 

  35. Srivastava, S. et al. Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Commun. Mater. 4, 52 (2023).

    Article  Google Scholar 

  36. Lafalce, E., Zhang, C., Liu, X. & Vardeny, Z. V. Role of intrinsic ion accumulation in the photocurrent and photocapacitive responses of MAPbBr3 photodetectors. ACS Appl. Mater. Interfaces 8, 35447–35453 (2016).

    Article  Google Scholar 

  37. Maier, A. et al. Sub-nanosecond intrinsic response time of PbS nanocrystal IR-photodetectors. Nano Lett. 22, 2809–2816 (2022).

    Article  ADS  Google Scholar 

  38. Shi, J. et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule 2, 879–901 (2018).

    Article  Google Scholar 

  39. Wang, Q., Moser, J. E. & Grätzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005).

    Article  Google Scholar 

  40. Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002).

    Article  ADS  Google Scholar 

  41. Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325–333 (2002).

    Article  Google Scholar 

  42. Wu, Z. et al. Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder. npj Flex. Electron. 4, 6 (2020).

    Article  Google Scholar 

  43. Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 13, 1–4 (2019).

    Article  ADS  Google Scholar 

  44. Ma, X., Janssen, R. A. J. & Gelinck, G. H. Trap-assisted charge generation and recombination in state-of-the-art organic photodetectors. Adv. Mater. Technol. 8, 2300234 (2023).

    Article  Google Scholar 

  45. Ndiaye, N. S., Simonetti, O., Nguyen, T. P. & Giraudet, L. Generation-recombination in disordered organic semiconductor: application to the characterization of traps. Org. Electron. 99, 106350 (2021).

    Article  Google Scholar 

  46. Bao, C. & Gao, F. Physics of defects in metal halide perovskites. Rep. Prog. Phys. 85, 096501 (2022).

    Article  ADS  Google Scholar 

  47. Kao, K. C. in Dielectric Phenomena in Solids Ch. 7 (Academic, 2004).

  48. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  ADS  Google Scholar 

  49. Konstantatos, G. & Sargent, E. H. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain. Appl. Phys. Lett. 91, 100–102 (2007).

    Article  Google Scholar 

  50. Zarrabi, N. et al. Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nat. Commun. 11, 5567 (2020).

    Article  ADS  Google Scholar 

  51. Ahmadi, M., Wu, T. & Hu, B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017).

    Article  ADS  Google Scholar 

  52. Kublitski, J. et al. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 12, 551 (2021).

    Article  ADS  Google Scholar 

  53. Simone, G., Dyson, M. J., Meskers, S. C. J., Janssen, R. A. J. & Gelinck, G. H. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv. Funct. Mater. 30, 1904205 (2020).

    Article  Google Scholar 

  54. Ollearo, R. et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12, 7277 (2021).

    Article  ADS  Google Scholar 

  55. Furlan, J. Tunnelling generation-recombination currents in a-Si junctions. Prog. Quantum Electron. 25, 55–96 (2001).

    Article  ADS  Google Scholar 

  56. Bozyigit, D. & Wood, V. Electrical characterization of nanocrystal solids. J. Mater. Chem. C 2, 3172–3184 (2014).

    Article  Google Scholar 

  57. Neamen, D. Semiconductor physics and devices. Mater. Today 9, 57 (2006).

    Google Scholar 

  58. Kasap, S. O. Principles of Electronic Materials and Devices 4th edn (McGraw-Hill Education, 2018).

  59. Bässler, H. & Köhler, A. in Unimolecular and Supramolecular Electronics I. Topics in Current Chemistry Vol. 312 (ed. Metzger, R.) 1–65 (Springer, 2011).

  60. McCreery, R. L. Carbon-based molecular junctions for practical molecular electronics. Acc. Chem. Res. 55, 2766–2779 (2022).

    Article  Google Scholar 

  61. Morteza Najarian, A. & McCreery, R. L. Structure controlled long-range sequential tunneling in carbon-based molecular junctions. ACS Nano 11, 3542–3552 (2017).

    Article  Google Scholar 

  62. Nenashev, A. V., Oelerich, J. O. & Baranovskii, S. D. Theoretical tools for the description of charge transport in disordered organic semiconductors. J. Phys. Condens. Matter 27, 093201 (2015).

    Article  ADS  Google Scholar 

  63. Baranovskii, S. D. Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251, 487–525 (2014).

    Article  ADS  Google Scholar 

  64. Kuik, M., Koster, L. J. A., Wetzelaer, G. A. H. & Blom, P. W. M. Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011).

    Article  ADS  Google Scholar 

  65. Tessler, N., Preezant, Y., Rappaport, N. & Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009).

    Article  Google Scholar 

  66. Cheng, L., Zhang, C. & Liu, Y. The optimal electronic structure for high-mobility 2D semiconductors: exceptionally high hole mobility in 2D antimony. J. Am. Chem. Soc. 141, 16296–16302 (2019).

    Article  Google Scholar 

  67. Zhang, K. et al. Recent progress and challenges based on two-dimensional material photodetectors. Nano Express 2, 012001 (2021).

    Article  ADS  Google Scholar 

  68. Yan, F. et al. Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods 2, 1700349 (2018).

    Article  Google Scholar 

  69. Malik, M., Iqbal, M. A., Choi, J. R. & Pham, P. V. 2D materials for efficient photodetection: overview, mechanisms, performance and UV-IR range applications. Front. Chem. 10, 905404 (2022).

    Article  ADS  Google Scholar 

  70. Wang, J., Han, J., Chen, X. & Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 1, 33–53 (2019).

    Article  Google Scholar 

  71. Kwak, D., Polyushkin, D. K. & Mueller, T. In-sensor computing using a MoS2 photodetector with programmable spectral responsivity. Nat. Commun. 14, 4264 (2023).

    Article  ADS  Google Scholar 

  72. Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018).

    Article  Google Scholar 

  73. Tan, C. et al. Evaporated SexTe1−x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32, 2001329 (2020).

    Article  Google Scholar 

  74. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018).

    Article  ADS  Google Scholar 

  75. Sefidmooye Azar, N. et al. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano 15, 6573–6581 (2021).

    Article  Google Scholar 

  76. Shuai, Z., Geng, H., Xu, W., Liao, Y. & André, J. M. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem. Soc. Rev. 43, 2662–2679 (2014).

    Article  Google Scholar 

  77. Ghorab, M., Fattah, A. & Joodaki, M. Fundamentals of organic solar cells: a review on mobility issues and measurement methods. Optik 267, 169730 (2022).

    Article  ADS  Google Scholar 

  78. Shaw, J. M. & Seidler, P. F. Organic electronics: introduction. IBM J. Res. Dev. 45, 3–8 (2001).

    Article  Google Scholar 

  79. Vafaie, M. et al. Molecular surface programming of rectifying junctions between InAs colloidal quantum dot solids. Proc. Natl Acad. Sci. USA 120, e2305327120 (2023).

    Article  Google Scholar 

  80. Xia, P. et al. Sequential co-passivation in InAs colloidal quantum dot solids enables efficient near-infrared photodetectors. Adv. Mater. 35, 2301842 (2023).

    Article  Google Scholar 

  81. Xia, P. et al. Arresting ion migration from the ETL increases stability in infrared light detectors based on III–V colloidal quantum dots. Adv. Mater. 36, 2310122 (2023).

    Article  Google Scholar 

  82. Jokar, E., Cai, L., Han, J., Nacpil, E. J. C. & Jeon, I. Emerging opportunities in lead-free and lead-tin perovskites for environmentally viable photodetector applications. Chem. Mater. 35, 3404–3426 (2023).

    Article  Google Scholar 

  83. Liu, F. et al. Highly efficient and stable self-powered mixed tin–lead perovskite photodetector used in remote wearable health monitoring technology. Adv. Sci. 10, 2205879 (2023).

    Article  ADS  Google Scholar 

  84. Wang, H. et al. A review of perovskite-based photodetectors and their applications. Nanomaterials 12, 4390 (2022).

    Article  ADS  Google Scholar 

  85. Najarian, A. M. & McCreery, R. L. Long-range activationless photostimulated charge transport in symmetric molecular junctions. ACS Nano 13, 867–877 (2019).

    Article  Google Scholar 

  86. Morteza Najarian, A., Bayat, A. & McCreery, R. L. Orbital control of photocurrents in large area all-carbon molecular junctions. J. Am. Chem. Soc. 140, 1900–1909 (2018).

    Article  Google Scholar 

  87. Zheng, J. et al. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nat. Commun. 13, 1517 (2022).

    Article  ADS  Google Scholar 

  88. Cova, S., Ghioni, M., Lacaita, A., Samori, C. & Zappa, F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35, 1956 (1996).

    Article  ADS  Google Scholar 

  89. Tisa, S., Guerrieri, F. & Zappa, F. Variable-load quenching circuit for single-photon avalanche diodes. Opt. Express 16, 2232 (2008).

    Article  ADS  Google Scholar 

  90. Bronzi, D. et al. Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects. IEEE Photonics Technol. Lett. 25, 776–779 (2013).

    Article  ADS  Google Scholar 

  91. Xu, Y. & Lin, Q. Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7, 11315 (2020).

    Article  Google Scholar 

  92. Harter, A. C., Tabbert, B. & Goushcha, O. in Proc. SPIE 10526 Physics Simulation Optoelectronic Devices XXVI (SPIE, 2018).

  93. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81–92 (2016).

    Article  ADS  Google Scholar 

  94. Villa, F., Severini, F., Madonini, F. & Zappa, F. SPADs and SiPMs arrays for long‐range high‐speed light detection and ranging (lidar). Sensors 21, 3839 (2021).

    Article  ADS  Google Scholar 

  95. Liu, H. D. et al. Avalanche photodiode punch-through gain determination through excess noise analysis. J. Appl. Phys. 106, 64507 (2009).

    Article  Google Scholar 

  96. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics 3, 59–63 (2009).

    Article  ADS  Google Scholar 

  97. Kleinow, P. et al. Charge-layer design considerations in SAGCM InGaAs/InAlAs avalanche photodiodes. Phys. Status Solidi Appl. Mater. Sci. 213, 925–929 (2016).

    Article  ADS  Google Scholar 

  98. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  ADS  Google Scholar 

  99. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017).

    Article  ADS  Google Scholar 

  100. Neubauer, A., Yochelis, S., Amit, Y., Banin, U. & Paltiel, Y. Highly sensitive room temperature infrared hybrid organic-nanocrystal detector. Sens. Actuators A 229, 166–171 (2015).

    Article  Google Scholar 

  101. Aqua, T., Naaman, R., Aharoni, A., Banin, U. & Paltiel, Y. Hybrid nanocrystals-organic-semiconductor light sensor. Appl. Phys. Lett. 92, 223112 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.P.G.A. acknowledges support from CEX2019-000910-S (MCIN/AEI/10.13039/501100011033), Fundació Cellex and Mir-Puig; from Generalitat de Catalunya through CERCA; and from the La Caixa Foundation (100010434, EU Horizon 2020 Marie Skłodowska-Curie grant agreement 847648).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Zhijun Ning and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SETFOS software: https://www.fluxim.com/setfos-intro

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morteza Najarian, A., Vafaie, M., Chen, B. et al. Photophysical properties of materials for high-speed photodetection. Nat Rev Phys 6, 219–230 (2024). https://doi.org/10.1038/s42254-024-00699-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00699-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing