Letter | Published:

Hidden orbital order in the heavy fermion metal URu2Si2

Naturevolume 417pages831834 (2002) | Download Citation

Subjects

Abstract

When matter is cooled from high temperatures, collective instabilities develop among its constituent particles that lead to new kinds of order1. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2 is one such example, where the order responsible for the sharp specific heat anomaly at T0 = 17 K has remained unidentified despite more than seventeen years of effort2. In URu2Si2, the coexistence of large electron–electron repulsion and antiferromagnetic fluctuations leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favoured3. Here we develop a proposal for the nature of the hidden order in URu2Si2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17 K transition. We make detailed predictions for the outcome of neutron scattering measurements based on this proposal, so that it can be tested experimentally.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Goodstein, D. L. States of Matter (Dover, New York, 1985)

  2. 2

    Buyers, W. J. L. Low moments in heavy-fermion systems. Physica B 223 & 224, 9–14 (1996)

  3. 3

    Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986)

  4. 4

    Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985)

  5. 5

    Miyako, Y. et al. Magnetic properties of U(Ru1−xRhx)2Si2 single crystals (0<x<1). J. Appl. Phys. 70, 5791–5793 (1991)

  6. 6

    Ramirez, A. P. et al. Nonlinear susceptibility as a probe of tensor spin order in URu2Si2 . Phys. Rev. Lett. 68, 2680–2683 (1992)

  7. 7

    De Visser, A. et al. Thermal expansion and specific heat of monocrystalline URu2Si2 . Phys. Rev. B 34, 8168–8171 (1986)

  8. 8

    Palstra, T. T. M., Menvosky, A. A. & Mydosh, J. A. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986)

  9. 9

    Mason, T. E. & Buyers, W. J. L. Spin excitations and the electronic specific heat of URu2Si2 . Phys. Rev. B 43, 11471–11473 (1991)

  10. 10

    Broholm, C. et al. Magnetic excitations in the heavy-fermion superconductor URu2Si2 . Phys. Rev. B 43, 12809–12822 (1991)

  11. 11

    Mentink, S. A. M. et al. Gap formation and magnetic ordering in URu2Si2 probed by high-field magnetoresistance. Phys. Rev. B 53, R6014–R6017 (1996)

  12. 12

    van Dijk, N. H. et al. Specific heat of heavy-fermion URu2Si2 in high magnetic fields. Phys. Rev. B 56, 14493–14498 (1997)

  13. 13

    Mason, T. E. et al. Nontrivial magnetic order in URu2Si2? J. Phys. Condens. Mat. 7, 5089–5096 (1995)

  14. 14

    Amitsuka, H. et al. Effect of pressure on tiny antiferromagnetic moment in the heavy-electron compound URu2Si2 . Phys. Rev. Lett. 83, 5114–5117 (1999)

  15. 15

    Fisher, R. A. et al. Specific heat of URu2Si2: Effect of pressure and magnetic field on the magnetic and superconducting transitions. Physica B 163, 419–423 (1990)

  16. 16

    Shah, N., Chandra, P., Coleman, P. & Mydosh, J. A. Hidden order in URu2Si2 . Phys. Rev. B 61, 564–569 (2000)

  17. 17

    Matsuda, K. et al. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203-1–087203-4 (2001)

  18. 18

    Luke, G. M. et al. Muon spin relaxation in heavy fermion systems. Hyper. Inter. 85, 397–409 (1994)

  19. 19

    Chandra, P., Coleman, P. & Mydosh, J. A. Pressure-induced magnetism and hidden order in URu2Si2. Preprint cond-mat/0110048 at 〈http://xxx.lanl.gov〉 (2001).

  20. 20

    Bernal, O. O. et al. 29Si NMR and hidden order in URu2Si2 . Phys. Rev. Lett. 87, 153–156 (2001)

  21. 21

    Schlichter, C. P. Principles of Magnetic Resonance (Springer, Berlin, 1978)

  22. 22

    Halperin, B. I. & Rice, T. M. in Solid State Physics (eds Seitz, F., Turnbull, D. & Ehrenreich, H.) Vol. 21, 116–192 (Academic, New York, 1968)

  23. 23

    Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg-Hubbard model: Implications for high T c superconductors. Phys. Rev. B 37, 3774–3777 (1988)

  24. 24

    Kotliar, G. Resonating valence bonds and D-wave superconductivity. Phys. Rev. B 37, 3664–3666 (1988)

  25. 25

    Nersesyan, A. A. & Vachnadze, G. E. Low-temperature thermodynamics of two-dimensional orbital antiferromagnet. J. Low-Temp. Phys. 77, 293–303 (1989)

  26. 26

    Schulz, H. J. Fermi surface instabilities of a generalized two-dimensional Hubbard model. Phys. Rev. B 39, 2940–2943 (1989)

  27. 27

    Hsu, T. C., Marston, J. B. & Affleck, I. Two observable features of the staggered-flux phase at nonzero doping. Phys. Rev. B 43, 2866–2877 (1991)

  28. 28

    Lee, P. A. Orbital currents in underdoped cuprates. Preprint cond-mat/0201052 at 〈http://xxx.lanl.gov〉 (2002).

  29. 29

    Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503-1–094503-10 (2001)

  30. 30

    Kee, H.-Y. & Kim, Y. B. Specific heat anomaly in the D-density wave state and emergence of incommensurate orbital antiferromagnetism. Preprint cond-mat/0111461 at 〈http://xxx.lanl.gov〉 (2001).

Download references

Acknowledgements

We acknowledge discussions with G. Aeppli, H. Amitsuka, O. Bernal, S. Chakravarty, L.P. Gorkov, G. Lonzarich, K. McEuen, D. McLaughlin, D. Morr and C. Nayak. P. C. and V. T. are supported by the National Science Foundation.

Author information

Affiliations

  1. NEC, 4 Independence Way, New Jersey, 08540, Princeton, USA

    • P. Chandra
  2. Center for Materials Theory, Dept of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08855, USA

    • P. Coleman
    •  & V. Tripathi
  3. Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA, Leiden, The Netherlands

    • J. A. Mydosh

Authors

  1. Search for P. Chandra in:

  2. Search for P. Coleman in:

  3. Search for J. A. Mydosh in:

  4. Search for V. Tripathi in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to P. Coleman.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature00795

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.