Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hidden orbital order in the heavy fermion metal URu2Si2


When matter is cooled from high temperatures, collective instabilities develop among its constituent particles that lead to new kinds of order1. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2 is one such example, where the order responsible for the sharp specific heat anomaly at T0 = 17 K has remained unidentified despite more than seventeen years of effort2. In URu2Si2, the coexistence of large electron–electron repulsion and antiferromagnetic fluctuations leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favoured3. Here we develop a proposal for the nature of the hidden order in URu2Si2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17 K transition. We make detailed predictions for the outcome of neutron scattering measurements based on this proposal, so that it can be tested experimentally.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Magnetic field distribution associated with incommensurate orbital currents in the (0, 0, 1) plane.
Figure 2: An isotropic magnetic field distribution at the silicon sites can be produced by many different wave vectors Q for orbital order, all of which give qualitatively similar neutron scattering patterns.


  1. Goodstein, D. L. States of Matter (Dover, New York, 1985)

    Google Scholar 

  2. Buyers, W. J. L. Low moments in heavy-fermion systems. Physica B 223 & 224, 9–14 (1996)

    Article  Google Scholar 

  3. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986)

    ADS  CAS  Article  Google Scholar 

  4. Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985)

    ADS  CAS  Article  Google Scholar 

  5. Miyako, Y. et al. Magnetic properties of U(Ru1−xRhx)2Si2 single crystals (0<x<1). J. Appl. Phys. 70, 5791–5793 (1991)

    ADS  CAS  Article  Google Scholar 

  6. Ramirez, A. P. et al. Nonlinear susceptibility as a probe of tensor spin order in URu2Si2 . Phys. Rev. Lett. 68, 2680–2683 (1992)

    ADS  CAS  Article  Google Scholar 

  7. De Visser, A. et al. Thermal expansion and specific heat of monocrystalline URu2Si2 . Phys. Rev. B 34, 8168–8171 (1986)

    ADS  CAS  Article  Google Scholar 

  8. Palstra, T. T. M., Menvosky, A. A. & Mydosh, J. A. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986)

    ADS  CAS  Article  Google Scholar 

  9. Mason, T. E. & Buyers, W. J. L. Spin excitations and the electronic specific heat of URu2Si2 . Phys. Rev. B 43, 11471–11473 (1991)

    ADS  CAS  Article  Google Scholar 

  10. Broholm, C. et al. Magnetic excitations in the heavy-fermion superconductor URu2Si2 . Phys. Rev. B 43, 12809–12822 (1991)

    ADS  CAS  Article  Google Scholar 

  11. Mentink, S. A. M. et al. Gap formation and magnetic ordering in URu2Si2 probed by high-field magnetoresistance. Phys. Rev. B 53, R6014–R6017 (1996)

    ADS  CAS  Article  Google Scholar 

  12. van Dijk, N. H. et al. Specific heat of heavy-fermion URu2Si2 in high magnetic fields. Phys. Rev. B 56, 14493–14498 (1997)

    ADS  CAS  Article  Google Scholar 

  13. Mason, T. E. et al. Nontrivial magnetic order in URu2Si2? J. Phys. Condens. Mat. 7, 5089–5096 (1995)

    ADS  CAS  Article  Google Scholar 

  14. Amitsuka, H. et al. Effect of pressure on tiny antiferromagnetic moment in the heavy-electron compound URu2Si2 . Phys. Rev. Lett. 83, 5114–5117 (1999)

    ADS  CAS  Article  Google Scholar 

  15. Fisher, R. A. et al. Specific heat of URu2Si2: Effect of pressure and magnetic field on the magnetic and superconducting transitions. Physica B 163, 419–423 (1990)

    ADS  CAS  Article  Google Scholar 

  16. Shah, N., Chandra, P., Coleman, P. & Mydosh, J. A. Hidden order in URu2Si2 . Phys. Rev. B 61, 564–569 (2000)

    ADS  CAS  Article  Google Scholar 

  17. Matsuda, K. et al. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203-1–087203-4 (2001)

    ADS  Article  Google Scholar 

  18. Luke, G. M. et al. Muon spin relaxation in heavy fermion systems. Hyper. Inter. 85, 397–409 (1994)

    ADS  CAS  Article  Google Scholar 

  19. Chandra, P., Coleman, P. & Mydosh, J. A. Pressure-induced magnetism and hidden order in URu2Si2. Preprint cond-mat/0110048 at 〈〉 (2001).

  20. Bernal, O. O. et al. 29Si NMR and hidden order in URu2Si2 . Phys. Rev. Lett. 87, 153–156 (2001)

    Article  Google Scholar 

  21. Schlichter, C. P. Principles of Magnetic Resonance (Springer, Berlin, 1978)

    Book  Google Scholar 

  22. Halperin, B. I. & Rice, T. M. in Solid State Physics (eds Seitz, F., Turnbull, D. & Ehrenreich, H.) Vol. 21, 116–192 (Academic, New York, 1968)

    Google Scholar 

  23. Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg-Hubbard model: Implications for high T c superconductors. Phys. Rev. B 37, 3774–3777 (1988)

    ADS  CAS  Article  Google Scholar 

  24. Kotliar, G. Resonating valence bonds and D-wave superconductivity. Phys. Rev. B 37, 3664–3666 (1988)

    ADS  CAS  Article  Google Scholar 

  25. Nersesyan, A. A. & Vachnadze, G. E. Low-temperature thermodynamics of two-dimensional orbital antiferromagnet. J. Low-Temp. Phys. 77, 293–303 (1989)

    ADS  Article  Google Scholar 

  26. Schulz, H. J. Fermi surface instabilities of a generalized two-dimensional Hubbard model. Phys. Rev. B 39, 2940–2943 (1989)

    ADS  CAS  Article  Google Scholar 

  27. Hsu, T. C., Marston, J. B. & Affleck, I. Two observable features of the staggered-flux phase at nonzero doping. Phys. Rev. B 43, 2866–2877 (1991)

    ADS  CAS  Article  Google Scholar 

  28. Lee, P. A. Orbital currents in underdoped cuprates. Preprint cond-mat/0201052 at 〈〉 (2002).

  29. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503-1–094503-10 (2001)

    ADS  Article  Google Scholar 

  30. Kee, H.-Y. & Kim, Y. B. Specific heat anomaly in the D-density wave state and emergence of incommensurate orbital antiferromagnetism. Preprint cond-mat/0111461 at 〈〉 (2001).

Download references


We acknowledge discussions with G. Aeppli, H. Amitsuka, O. Bernal, S. Chakravarty, L.P. Gorkov, G. Lonzarich, K. McEuen, D. McLaughlin, D. Morr and C. Nayak. P. C. and V. T. are supported by the National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Coleman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandra, P., Coleman, P., Mydosh, J. et al. Hidden orbital order in the heavy fermion metal URu2Si2. Nature 417, 831–834 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing