Materials discovery at high pressures

  • A Correction to this article was published on 07 March 2017

Abstract

Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Materials discovery through pressure-induced phase transitions.
Figure 2: Superconductive materials obtained at high pressures.
Figure 3: Light-element-based superhard materials.
Figure 4: Crystal structures of different phases of polymeric nitrogen.

References

  1. 1

    Holzapfel, W. B. Physics of solids under strong compression. Rep. Prog. Phys. 59, 28–90 (1996).

  2. 2

    Badding, J. V. High-pressure synthesis, characterization, and tuning of solid state materials. Annu. Rev. Mater. Sci. 28, 631–658 (1998).

  3. 3

    Hemley, R. J. Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).

  4. 4

    McMillan, P. F. New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002).

  5. 5

    McMillan, P. New materials from high pressure experiments: challenges and opportunities. High Press. Res. 23, 7–22 (2003).

  6. 6

    McMillan, P. F. Chemistry at high pressure. Chem. Soc. Rev. 35, 855–857 (2006).

  7. 7

    Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

  8. 8

    McMillan, P. F. Condensed matter chemistry under ‘extreme’ high pressure-high temperature conditions. High Press. Res. 24, 67–86 (2004).

  9. 9

    McMillan, P. F. Pressing on: the legacy of Percy W. Bridgman. Nat. Mater. 4, 715–718 (2005).

  10. 10

    Hemley, R. J. Percy W. Bridgman's second century. High Press. Res. 30, 581–619 (2010).

  11. 11

    Mujica, A., Rubio, A., Muñoz, A. & Needs, A. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 75, 863 (2003).

  12. 12

    Mao, H. K. & Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

  13. 13

    Wentorf, R. H. Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957).

  14. 14

    Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18, R1–R8 (2005).

  15. 15

    Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

  16. 16

    Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

  17. 17

    Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

  18. 18

    Tomasino, D., Kim, M., Smith, J. & Yoo, C.-S. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett. 113, 205502 (2014).

  19. 19

    Ma, Y., Oganov, A. R., Li, Z., Xie, Y. & Kotakoski, J. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 102, 100–103 (2009).

  20. 20

    Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

  21. 21

    Guillaume, C. L. et al. Cold melting and solid structures of dense lithium. Nat. Phys. 7, 211–214 (2011).

  22. 22

    Marqués, M. et al. Crystal structures of dense lithium: a metal–semiconductor–metal transition. Phys. Rev. Lett. 106, 095502 (2011).

  23. 23

    Zerr, A. et al. Recent advances in new hard high-pressure nitrides. Adv. Mater. 18, 2933–2948 (2006).

  24. 24

    Horvath-Bordon, E. et al. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35, 987–1014 (2006).

  25. 25

    Song, Y. New perspectives on potential hydrogen storage materials using high pressure. Phys. Chem. Chem. Phys. 15, 14524–14547 (2013).

  26. 26

    Kuno, K. et al. Heating of Li in hydrogen: possible synthesis of LiHx . High Press. Res. 35, 16–21 (2015).

  27. 27

    Pépin, C. M., Dewaele, A., Geneste, G., Loubeyre, P. & Mezouar, M. New iron hydrides under high pressure. Phys. Rev. Lett. 113, 265504 (2014).

  28. 28

    Li, B. et al. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc. Natl Acad. Sci. USA 108, 18618–18621 (2011).

  29. 29

    Scheler, T. et al. High-pressure synthesis and characterization of iridium trihydride. Phys. Rev. Lett. 111, 215503 (2013).

  30. 30

    Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

  31. 31

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

  32. 32

    Strobel, T. A., Ganesh, P., Somayazulu, M., Kent, P. R. C. & Hemley, R. J. Novel cooperative interactions and structural ordering in H2S-H2. Phys. Rev. Lett. 107, 255503 (2011).

  33. 33

    Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

  34. 34

    Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

  35. 35

    Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103(R) (2016).

  36. 36

    Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511(R) (2015).

  37. 37

    Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).

  38. 38

    Mao, W. L. & Mao, H.-K. Hydrogen storage in molecular compounds. Proc. Natl Acad. Sci. USA 101, 708–710 (2004).

  39. 39

    Li, X. et al. Stable Lithium Argon compounds under high pressure. Sci. Rep. 5, 16675 (2015).

  40. 40

    Miao, M. S. et al. Anionic chemistry of noble gases: formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure. J. Am. Chem. Soc. 137, 14122–14128 (2015).

  41. 41

    Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nat. Chem. 6, 644–648 (2014).

  42. 42

    Peng, F., Wang, Y., Wang, H., Zhang, Y. & Ma, Y. Stable xenon nitride at high pressures. Phys. Rev. B 92, 094104 (2015).

  43. 43

    Miao, M. S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

  44. 44

    Rueff, J.-P. et al. Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy. Phys. Rev. Lett. 82, 3284–3287 (1999).

  45. 45

    Fukazawa, H. et al. Suppression of magnetic order by pressure in BaFe2As2. J. Phys. Soc. Japan 77, 105004 (2008).

  46. 46

    Kusmartseva, A. F., Sipos, B., Berger, H., Forró, L. & Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

  47. 47

    Wang, Y. & Ma, Y. Perspective: crystal structure prediction at high pressures. J. Chem. Phys. 140, 40901 (2014).

  48. 48

    Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).

  49. 49

    McMahon, J. M., Morales, M. A., Pierleoni, C. & Ceperley, D. M. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607 (2012).

  50. 50

    Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

  51. 51

    Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).

  52. 52

    Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).

  53. 53

    Zhai, S. & Ito, E. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geosci. Front. 2, 101–106 (2011).

  54. 54

    Jeanloz, R. et al. Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl Acad. Sci. USA 104, 9172–9177 (2007).

  55. 55

    Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

  56. 56

    Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004).

  57. 57

    Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

  58. 58

    Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

  59. 59

    Trimarchi, G. & Zunger, A. Global space-group optimization problem: finding the stablest crystal structure without constraints. Phys. Rev. B 75, 104113 (2007).

  60. 60

    Lonie, D. C. & Zurek, E. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).

  61. 61

    Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

  62. 62

    Kolmogorov, A. N. et al. New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).

  63. 63

    Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

  64. 64

    Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

  65. 65

    Hamlin, J. J. Superconductivity in the metallic elements at high pressures. Phys. C Supercond. Appl. 514, 59–76 (2015).

  66. 66

    Prakash, O., Kumar, A., Thamizhavel, A. & Ramakrishnan, S. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 355, 52–55 (2017).

  67. 67

    Chen, X.-J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

  68. 68

    Monteverde, M. et al. High-pressure effects in fluorinated HgBa2Ca2Cu3O8+δ Europhys. Lett. 72, 458 (2005).

  69. 69

    Chu, C. W. & Lorenz, B. High pressure studies on Fe-pnictide superconductors. Phys. C 469, 385–395 (2009).

  70. 70

    Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam – 1CumO2 m + 2 + δ (m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B Condens. Matter 50, 4260–4263 (1994).

  71. 71

    Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

  72. 72

    Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000).

  73. 73

    Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004).

  74. 74

    Hemley, R. J., Struzhkin, V. V., Mao, H. & Timofeev, Y. A. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).

  75. 75

    Degtyareva, O. et al. Competition of charge-density waves and superconductivity in sulfur. Phys. Rev. Lett. 99, 155505 (2007).

  76. 76

    Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

  77. 77

    Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

  78. 78

    Dias, R. P. & Silvera, I. F. Observation of the Wigner–Huntington transition to metallic hydrogen. Sciencehttp:\\dx.doi.org\10.1126/science.aal1579 (2017).

  79. 79

    Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

  80. 80

    Feng, J. et al. Structures and potential superconductivity in SiH4 at high pressure: en route to ‘metallic hydrogen’. Phys. Rev. Lett. 96, 017006 (2006).

  81. 81

    Chen, X.-J. et al. Superconducting behavior in compressed solid SiH4 with a layered structure. Phys. Rev. Lett. 101, 077002 (2008).

  82. 82

    Flores-Livas, J. A. et al. High-pressure structures of disilane and their superconducting properties. Phys. Rev. Lett. 108, 117004 (2012).

  83. 83

    Gao, G. et al. Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002 (2008).

  84. 84

    Li, Y. et al. Superconductivity at 100 K in dense SiH4(H2)2 predicted by first principles. Proc. Natl Acad. Sci. USA 107, 15708–15711 (2010).

  85. 85

    Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).

  86. 86

    Li, Y. et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015).

  87. 87

    Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

  88. 88

    Degtyareva, O., Proctor, J. E., Guillaume, C. L., Gregoryanz, E. & Hanfland, M. Formation of transition metal hydrides at high pressures. Solid State Commun. 149, 1583–1586 (2009).

  89. 89

    Rousseau, R., Boero, M., Bernasconi, M., Parrinello, M. & Terakura, K. Ab initio simulation of phase transitions and dissociation of H2S at high pressure. Phys. Rev. Lett. 85, 1254–1257 (2000).

  90. 90

    Fujihisa, H. et al. Molecular dissociation and two low-temperature high-pressure phases of H2S. Phys. Rev. B 69, 214102 (2004).

  91. 91

    Akashi, R., Sano, W., Arita, R. & Tsuneyuki, S. Possible ‘Magnéli’ phases and self-alloying in the superconducting sulfur hydride. Phys. Rev. Lett. 117, 075503 (2016).

  92. 92

    Ishikawa, T. et al. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Sci. Rep. 6, 23160 (2016).

  93. 93

    Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

  94. 94

    Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

  95. 95

    Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Superconductivity above 100 K in PH3 at high pressures. Preprint at https://arxiv.org/abs/1508.06224 (2015).

  96. 96

    Fu, Y. et al. High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. Chem. Mater. 28, 1746–1755 (2016).

  97. 97

    Flores-Livas, J. A. et al. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 93, 20508 (2016).

  98. 98

    Liu, H., Li, Y., Gao, G., Tse, J. S. & Naumov, I. I. Crystal structure and superconductivity of PH3 at high pressures. J. Phys. Chem. C 120, 3458–3461 (2016).

  99. 99

    Shamp, A. et al. Decomposition products of phosphine under pressure: PH2 stable and superconducting? J. Am. Chem. Soc. 138, 1884–1892 (2016).

  100. 100

    Shamp, A. & Zurek, E. Superconducting high-pressure phases composed of hydrogen and iodine. J. Phys. Chem. Lett. 6, 4067–4072 (2015).

  101. 101

    Zhong, X. et al. Tellurium hydrides at high pressures: high-temperature superconductors. Phys. Rev. Lett. 116, 057002 (2016).

  102. 102

    Mahdi Davari Esfahani, M. et al. Superconductivity of novel tin hydrides (SnnHm) under pressure. Sci. Rep. 6, 22873 (2016).

  103. 103

    Zhao, Z., Xu, B. & Tian, Y. Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 70115–31649 (2016).

  104. 104

    Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

  105. 105

    Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

  106. 106

    Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. K. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012).

  107. 107

    Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).

  108. 108

    Yao, M. et al. Pressure-induced transformation and superhard phase in fullerenes: the effect of solvent intercalation. Appl. Phys. Lett. 103, 71913 (2013).

  109. 109

    Lin, Y. et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).

  110. 110

    Solopova, N. A., Dubrovinskaia, N. & Dubrovinsky, L. Raman spectroscopy of glassy carbon up to 60 GPa. Appl. Phys. Lett. 102, 121909 (2013).

  111. 111

    Li, Q. et al. Superhard and superconducting structures of BC5. J. Appl. Phys. 108, 23507 (2010).

  112. 112

    Solozhenko, V. L., Kurakevych, O. O., Andrault, D., Le Godec, Y. & Mezouar, M. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102, 15506 (2009).

  113. 113

    Zinin, P. V. et al. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase. J. Appl. Phys. 111, 114905 (2012).

  114. 114

    Zinin, P. V., Ming, L. C., Kudryashov, I., Konishi, N. & Sharma, S. K. Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature. J. Raman Spectrosc. 38, 1362–1367 (2007).

  115. 115

    Calandra, M. & Mauri, F. High-Tc superconductivity in superhard diamondlike BC5. Phys. Rev. Lett. 101, 016401 (2008).

  116. 116

    Zhang, M. et al. Superhard BC3 in cubic diamond structure. Phys. Rev. Lett. 114, 15502 (2015).

  117. 117

    Solozhenko, V. L., Andrault, D., Fiquet, G., Mezouar, M. & Rubie, D. C. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385–1387 (2001).

  118. 118

    Zhao, Y. et al. Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17, 3139–3145 (2002).

  119. 119

    Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

  120. 120

    Zerr, A. et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999).

  121. 121

    Pan, Z., Sun, H., Zhang, Y. & Chen, C. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102, 55503 (2009).

  122. 122

    Pan, Z., Sun, H. & Chen, C. Colossal shear-strength enhancement of low-density cubic BC2N bynanoindentation. Phys. Rev. Lett. 98, 135505 (2007).

  123. 123

    Zhang, X. et al. First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013).

  124. 124

    Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Materials: ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

  125. 125

    Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostructures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

  126. 126

    Dubrovinskaia, N. et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 2013–2016 (2007).

  127. 127

    Tse, J. S., Klug, D. D. & Gao, F. Hardness of nanocrystalline diamonds. Phys. Rev. B 73, 140102 (2006).

  128. 128

    Kaner, R. B., Gilman, J. J. & Tolbert, S. H. Materials science. Designing superhard materials. Science 308, 1268–1269 (2005).

  129. 129

    Li, Q., Zhou, D., Zheng, W., Ma, Y. & Chen, C. Anomalous stress response of ultrahard WBn compounds. Phys. Rev. Lett. 115, 185502 (2015).

  130. 130

    Li, Q., Zhou, D., Zheng, W., Ma, Y. & Chen, C. Global structural optimization of tungsten borides. Phys. Rev. Lett. 110, 136403 (2013).

  131. 131

    Wang, M., Li, Y., Cui, T., Ma, Y. & Zou, G. Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4. Appl. Phys. Lett. 93, 101905 (2008).

  132. 132

    Gu, Q., Krauss, G. & Steurer, W. Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20, 3620–3626 (2008).

  133. 133

    Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297 (2004).

  134. 134

    Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2006).

  135. 135

    Young, A. F. et al. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).

  136. 136

    Chen, X.-J. et al. Hard superconducting nitrides. Proc. Natl Acad. Sci. USA 102, 3198–3201 (2005).

  137. 137

    Gao, F. et al. Hardness of covalent crystals. Phys. Rev. Lett. 91, 15502 (2003).

  138. 138

    Li, C., Li, J. C. & Jiang, Q. Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDA+U technique. Solid State Commun. 150, 1818–1821 (2010).

  139. 139

    Li, K., Wang, X., Zhang, F. & Xue, D. Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).

  140. 140

    šimůnek, A. & Vackárš, J. Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).

  141. 141

    Lyakhov, A. O. & Oganov, A. R. Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys. Rev. B 84, 92103 (2011).

  142. 142

    Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

  143. 143

    McMahan, A. K. & Lesar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

  144. 144

    Vogler, A., Wright, R. E. & Kunkely, H. Photochemical reductive cis-elimination incis-diazidobis(triphenylphosphane)platinum(ii) evidence of the formation of bis(triphenylphosphane)platinum(0) and hexaazabenzene. Angew. Chem. Int. Ed. Engl. 19, 717–718 (1980).

  145. 145

    Mailhiot, C. & Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B Condens. Matter 46, 14419–14435 (1992).

  146. 146

    Mattson, W. D., Sanchez-Portal, D., Chiesa, S. & Martin, R. M. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501 (2004).

  147. 147

    Zahariev, F., Hooper, J., Alavi, S., Zhang, F. & Woo, T. K. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).

  148. 148

    Wang, X. et al. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett. 109, 175502 (2012).

  149. 149

    Pickard, C. J. & Needs, R. J. High-pressure phases of nitrogen. Phys. Rev. Lett. 102, 125702 (2009).

  150. 150

    Zahariev, F., Dudiy, S. V., Hooper, J., Zhang, F. & Woo, T. K. Systematic method to new phases of polymeric nitrogen under high pressure. Phys. Rev. Lett. 97, 155503 (2006).

  151. 151

    Eremets, M. I., Hemley, R. J., Mao, H.-k. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

  152. 152

    Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hemley, R. J. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000).

  153. 153

    Gregoryanz, E. et al. High P-T transformations of nitrogen to 170 GPa. J. Chem. Phys. 126, 184505 (2007).

  154. 154

    Eremets, M. I. et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618–10623 (2004).

  155. 155

    Medvedev, S. A. et al. Phase stability of lithium azide at pressures up to 60 GPa. J. Phys. Condens. Matter 21, 195404 (2009).

  156. 156

    Hou, D. et al. Series of phase transitions in cesium azide under high pressure studied by in situ X-ray diffraction. Phys. Rev. B 84, 064127 (2011).

  157. 157

    Zhang, M., Yan, H., Wei, Q. & Liu, H. A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv. 5, 11825–11830 (2015).

  158. 158

    Prasad, D. L. V. K., Ashcroft, N. W. & Hoffmann, R. Evolving structural diversity and metallicity in compressed lithium azide. J. Phys. Chem. C 117, 20838–20846 (2013).

  159. 159

    Zhang, M., Yan, H., Wei, Q., Wang, H. & Wu, Z. Novel high-pressure phase with pseudo-benzene ‘N6’ molecule of LiN3. Europhys. Lett. 101, 26004 (2013).

  160. 160

    Peng, F., Yao, Y., Liu, H. & Ma, Y. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett. 6, 2363 (2015).

  161. 161

    Popov, M. Raman and IR study of high-pressure atomic phase of nitrogen. Phys. Lett. A 334, 317–325 (2005).

  162. 162

    Wang, H. et al. Nitrogen backbone oligomers. Sci. Rep. 5, 13239 (2015).

  163. 163

    Spaulding, D. K. et al. Pressure-induced chemistry in a nitrogen–hydrogen host–guest structure. Nat. Commun. 5, 5739 (2014).

  164. 164

    Goncharov, A. F. et al. Backbone NxH compounds at high pressures. J. Chem. Phys. 142, 214308 (2015).

  165. 165

    Raza, Z., Pickard, C. J., Pinilla, C. & Saitta, A. M. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett. 111, 235501 (2013).

  166. 166

    Yin, K., Wang, Y., Liu, H., Peng, F. & Zhang, L. N2H: a novel polymeric hydronitrogen as a high energy density material. J. Mater. Chem. A 3, 4188–4194 (2015).

  167. 167

    Qian, G.-R. et al. Diverse chemistry of stable hydronitrogens, and implications for planetary and materials sciences. Sci. Rep. 6, 25947 (2016).

  168. 168

    Shen, Y. et al. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep. 5, 14204 (2015).

  169. 169

    Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71, 3150–3153 (1993).

  170. 170

    Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002).

  171. 171

    Strobel, T. A., Somayazulu, M. & Hemley, R. J. Phase behavior of H2+H2O at high pressures and low temperatures. J. Phys. Chem. C 115, 4898–4903 (2011).

  172. 172

    Ciabini, L. et al. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 6, 39–43 (2007).

  173. 173

    Zurek, E., Hoffmann, R., Ashcroft, N. W., Oganov, A. R. & Lyakhov, A. O. A little bit of lithium does a lot for hydrogen. Proc. Natl Acad. Sci. USA 106, 17640–17643 (2009).

  174. 174

    Salamat, A., Deifallah, M., Cabrera, R. Q., Cora, F. & McMillan, P. F. Identification of new pillared-layered carbon nitride materials at high pressure. Sci. Rep. 3, 2122 (2013).

  175. 175

    Horvath-Bordon, E. et al. High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angew. Chem. Int. Ed. 46, 1476–1480 (2007).

  176. 176

    Pickard, C. J., Salamat, A., Bojdys, M. J., Needs, R. J. & McMillan, P. F. Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 94, 94104 (2016).

  177. 177

    Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem.http:\\dx.doi.org\10.1038/nchem.2716 (2017).

  178. 178

    Miao, M. Caesium in high oxidation states and as a p-block element. Nat. Chem. 5, 846–852 (2013).

  179. 179

    Botana, J. et al. Mercury under pressure acts as a transition metal: calculated from first principles. Angew. Chem. Int. Ed. 127, 9412–9415 (2015).

  180. 180

    Yang, G., Wang, Y., Peng, F., Bergara, A. & Ma, Y. Gold as a 6p-element in dense lithium aurides. J. Am. Chem. Soc. 138, 4046–4052 (2016).

  181. 181

    Botana, J. & Miao, M.-S. Pressure-stabilized lithium caesides with caesium anions beyond the −1 state. Nat. Commun. 5, 4861 (2014).

  182. 182

    Somayazulu, M. et al. Novel broken symmetry phase from N2O at high pressures and high temperatures. Phys. Rev. Lett. 87, 135504 (2001).

  183. 183

    Ninet, S. et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).

  184. 184

    Palasyuk, T. et al. Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nat. Commun. 5, 3460 (2014).

  185. 185

    Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).

  186. 186

    Wang, Y. et al. High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011).

  187. 187

    Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

  188. 188

    Skriver, H. Calculated structural phase transitions in the alkaline earth metals. Phys. Rev. Lett. 49, 1768–1772 (1982).

  189. 189

    Neaton, J. B. J. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).

  190. 190

    Takemura, K. et al. Phase stability of highly compressed cesium. Phys. Rev. B 61, 14399–14404 (2000).

  191. 191

    Lv, J., Wang, Y., Zhu, L. & Ma, Y. Predicted novel high-pressure phases of lithium. Phys. Rev. Lett. 106, 15503 (2011).

  192. 192

    Li, P., Gao, G., Wang, Y. & Ma, Y. Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C 114, 21745–21749 (2010).

  193. 193

    Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).

  194. 194

    Zhu, Q., Oganov, A. & Lyakhov, A. Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 15, 7696–7700 (2013).

  195. 195

    Zurek, E., Wen, X. D. & Hoffmann, R. (Barely) solid Li(NH3)4: the electronics of an expanded metal. J. Am. Chem. Soc. 133, 3535–3547 (2011).

  196. 196

    Zhou, Y. et al. Prediction of host–guest Na–Fe intermetallics at high pressures. Inorg. Chem. 55, 7026–7032 (2016).

  197. 197

    Demazeau, G. Growth of cubic boron nitride by chemical vapor deposition and high-pressure high-temperature synthesis. Diam. Relat. Mater. 2, 197–200 (1993).

  198. 198

    Xiao, G. et al. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 10297–10303 (2015).

  199. 199

    Ahart, M. et al. Synthesis of polar ordered oxynitride perovskite. Preprint athttps://arxiv.org/abs/1604.03989 (2016).

  200. 200

    Zhou, Y. et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5. Proc. Natl Acad. Sci. USA 113, 2904–2909 (2016).

  201. 201

    Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).

  202. 202

    Schwarz, U., Grzechnik, A., Syassen, K., Loa, I. & Hanfland, M. Rubidium-IV: a high pressure phase with complex crystal structure. Phys. Rev. Lett. 83, 4085–4088 (1999).

  203. 203

    Neaton, J. B. & Ashcroft, N. W. On the constitution of sodium at higher densities. Phys. Rev. Lett. 86, 2830–2833 (2001).

  204. 204

    Batsanov, S. S. Effect of high pressure on crystal electronegativities of elements. J. Phys. Chem. Solids 58, 527–532 (1997).

  205. 205

    Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002).

  206. 206

    Gregoryanz, E. et al. Superconductivity in the chalcogens up to multimegabar pressures. Phys. Rev. B 65, 064504 (2002).

  207. 207

    Christensen, N. E. & Novikov, D. L. Predicted superconductive properties of lithium under pressure. Phys. Rev. Lett. 86, 1861–1864 (2001).

  208. 208

    Sakata, M., Nakamoto, Y., Shimizu, K., Matsuoka, T. & Ohishi, Y. Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Phys. Rev. B 83, 220512 (2011).

  209. 209

    Zhi-An, R. et al. Superconductivity at 55 K in iron-based f-doped layered quaternary compound Sm[O1 – xFx] FeAs. Chinese Phys. Lett. 25, 2215–2216 (2008).

  210. 210

    Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of T c in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 64519 (2008).

  211. 211

    Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).

  212. 212

    Parker, L. J., Atou, T. & Badding, J. V. Transition element-like chemistry for potassium under pressure. Science 273, 95–97 (1996).

  213. 213

    Ninet, S., Datchi, F. & Saitta, A. M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 108, 165702 (2012).

  214. 214

    Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

  215. 215

    Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

Download references

Acknowledgements

The authors acknowledge funding support from the National Key Research and Development Program of China (under Grant No. 2016YFB0201200), National Natural Science Foundation of China (under Grants No. 11404131, 11674121 and 11534003), 2012 Changjiang Scholar of Ministry of Education, Recruitment Program of Global Youth Experts in China, and Science Challenge Project (under Grant No. JCKY2016212A501).

Author information

Correspondence to Yanming Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Y., Lv, J. et al. Materials discovery at high pressures. Nat Rev Mater 2, 17005 (2017). https://doi.org/10.1038/natrevmats.2017.5

Download citation

Further reading