Review Article | Published:

Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties

Nature Reviews Materials volume 1, Article number: 15007 (2016) | Download Citation

  • An Erratum to this article was published on 16 February 2016

Abstract

Solution-processed hybrid organic–inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III–V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Structural Inorganic Chemistry5th edn (Oxford Univ. Press, 1984).

  2. 2.

    , , , & Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

  3. 3.

    , & Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

  4. 4.

    Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

  5. 5.

    & Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

  6. 6.

    CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

  7. 7.

    Oversigt. K. Danske Vidensk. Selsk. Forh. 8, 247 (1882).

  8. 8.

    , , & Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

  9. 9.

    , , , & Conducting layered organic-inorganic halides containing < 110 >-oriented perovskite sheets. Science 267, 1473–1476 (1995).

  10. 10.

    , , & Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995).

  11. 11.

    Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (1999). A comprehensive review of early materials chemistry for HOIP compounds.

  12. 12.

    , & Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

  13. 13.

    et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

  14. 14.

    et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

  15. 15.

    et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).

  16. 16.

    & Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175–4186 (2014).

  17. 17.

    , & The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun. 5, 7–26 (2015).

  18. 18.

    et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032–9050 (2015).

  19. 19.

    , , , & Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. Engl. 54, 3240–3248 (2015).

  20. 20.

    et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 54, 9705–9709 (2015).

  21. 21.

    et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

  22. 22.

    et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).

  23. 23.

    et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

  24. 24.

    , & The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

  25. 25.

    & Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

  26. 26.

    et al. Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015).

  27. 27.

    The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

  28. 28.

    et al. Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

  29. 29.

    , , , & Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology 26, 312009 (2015).

  30. 30.

    Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Acc. Chem. Res. 47, 3349–3360 (2014).

  31. 31.

    Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

  32. 32.

    et al. Perovskite photovoltaics. MRS Bull. 40, 635–685 (2015).

  33. 33.

    , & Structural and electronic properties of organohalide hybrid perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394–9409 (2015).

  34. 34.

    , , , & Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

  35. 35.

    The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013).

  36. 36.

    , & Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. J. Phys. Chem. Lett. 6, 2086–2095 (2015).

  37. 37.

    Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 44, 720–729 (2015).

  38. 38.

    , , & Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  39. 39.

    et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

  40. 40.

    , & in Photovoltaic Specialists Conference (PVSC) 38th IEEE, 1556–1559 (IEEE, Austin, Texas, 2012).

  41. 41.

    , & Photovoltaic effect in GaAs p–n junctions and solar energy conversion. Phys. Rev. 101, 1208–1209 (1956).

  42. 42.

    Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

  43. 43.

    Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015).

  44. 44.

    et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

  45. 45.

    , , , & Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  46. 46.

    , & Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). The first paper on planar HOIP solar cells, demonstrating conclusively that good charge transport is possible within CH3NH3PbI3 itself, something that could be deduced from reference 45.

  47. 47.

    , , & Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

  48. 48.

    , & Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (1999).

  49. 49.

    et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

  50. 50.

    & in Advanced Characterization Techniques for Thin Film Solar Cells Ch. 1 (eds Abou-Ras, D., Kirchartz, T. & Rau, U.) 3–32 (Wiley, 2011).

  51. 51.

    , & Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

  52. 52.

    , , & Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Phys. Rev. B 90, 045207 (2014).

  53. 53.

    et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

  54. 54.

    et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

  55. 55.

    et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).

  56. 56.

    , & Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4− octahedra. J. Phys. Soc. Jpn 63, 3870–3879 (1994).

  57. 57.

    et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

  58. 58.

    , , , & Photoelectronic responses in solution-processed perovskite CH3NH3PbI3 solar cells studied by photoluminescence and photoabsorption spectroscopy. IEEE J. Photovolt. 5, 401–405 (2015).

  59. 59.

    , & Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed. Engl. 54, 9757–9759 (2015).

  60. 60.

    , , , & Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015).

  61. 61.

    , , , & Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Phys. B 201, 427–430 (1994).

  62. 62.

    et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

  63. 63.

    et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–594 (2015). Providing the most fundamental measurements of exciton binding energy and effective mass in CH3NH3PbI3 yet, including in the device-relevant tetragonal phase, this study supports earlier reports (see main text) that the exciton binding energy is small enough to result in a negligible population of excitons at room temperature and that the excitonic reduced mass is indeed quite low (0.1m0).

  64. 64.

    , , & DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi RRL 8, 31–35 (2014).

  65. 65.

    , , & Computed and experimental absorption spectra of the perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 3061–3065 (2014).

  66. 66.

    et al. Optical properties of organometallic perovskite: an ab initio study using relativistic GW correction and Bethe–Salpeter equation. Europhys. Lett. 108, 67015 (2014); erratum 112, 29901(2015).

  67. 67.

    , & First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 44, 889–893 (2004). Appearing half a decade before the first HOIP solar cells, this computational study predicted that charge carriers in CH3NH3PbX3 materials would have small effective masses (0.1m0).

  68. 68.

    , , & Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003).

  69. 69.

    , & Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

  70. 70.

    , , , & First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 378, 290–293 (2014).

  71. 71.

    & Hybrid perovskites for photovoltaics: insights from first principles. Phys. Rev. B 89, 125203 (2014).

  72. 72.

    , & Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  73. 73.

    , , & Importance of orbital interactions in determining electronic band structures of organo-lead iodide. J. Phys. Chem. C 119, 4627–4634 (2015).

  74. 74.

    , , , & First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−x Clx. J. Phys. Chem. Lett. 6, 31–37 (2015).

  75. 75.

    , & Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

  76. 76.

    , , & Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

  77. 77.

    , , & Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

  78. 78.

    & Electronic and structural anomalies in lead chalcogenides. Phys. Rev. B 55, 13605–13610 (1997).

  79. 79.

    , & Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008).

  80. 80.

    et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

  81. 81.

    et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 16, 1424–1429 (2014).

  82. 82.

    et al. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface. Chem. Mater. 19, 600–607 (2007).

  83. 83.

    , , , & First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).

  84. 84.

    et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

  85. 85.

    & Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 2728–2733 (2014).

  86. 86.

    et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7 (2015).

  87. 87.

    & Physics of Semiconductor Devices (Wiley, 2007).

  88. 88.

    , , , & Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

  89. 89.

    , , , & High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

  90. 90.

    et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

  91. 91.

    et al. Are mobilities in hybrid organic–inorganic halide perovskites actually ‘high’?J. Phys. Chem. Lett. 6, 4754–4757 (2015).

  92. 92.

    , , & Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

  93. 93.

    et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). Appearing simultaneously with reference 94, these papers were the first to demonstrate long carrier lifetimes, and by combining these with the diffusion coefficients that were also measured, extracted the long diffusion lengths of the electronic charge carriers in polycrystalline CH3NH3PbI3 films.

  94. 94.

    et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

  95. 95.

    et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119, 3545–3549 (2015).

  96. 96.

    , , , & Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).

  97. 97.

    et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

  98. 98.

    et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). Appearing shortly before reference 97, this paper demonstrated growth of single-crystal CH3NH3PbX3 (X = I, Br), critical to understanding the fundamental properties of these materials, and showing that long carrier lifetimes and modest mobilities are properties of high-quality crystals as well as thin films.

  99. 99.

    et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

  100. 100.

    et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014).

  101. 101.

    & Minority carrier lifetime and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

  102. 102.

    et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014).

  103. 103.

    et al. Light-induced increase of electron diffusion length in a p–n junction type CH3NH3PbBr3 perovskite solar cell. J. Phys. Chem. Lett. 6, 2469–2476 (2015).

  104. 104.

    et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

  105. 105.

    , , , & Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

  106. 106.

    et al.Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites.J. Phys. Chem. Lett. 6, 4991–4996(2015).

  107. 107.

    , , , & Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

  108. 108.

    et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

  109. 109.

    et al. in MRS Fall Meeting NN14.05 (Boston, 2015).

  110. 110.

    & Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761(2015).

  111. 111.

    et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

  112. 112.

    , & Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater. Horizons 2, 228–231 (2015).

  113. 113.

    , & How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

  114. 114.

    et al. CH3NH3SnxPb1−xI3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

  115. 115.

    , , , & Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

  116. 116.

    , , & Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

  117. 117.

    et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

  118. 118.

    et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 10.1002/aenm.201400812 (2015).

  119. 119.

    et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

  120. 120.

    et al. The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17, 112–116 (2015).

  121. 121.

    et al. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502 (2014).

  122. 122.

    et al. Identification of trap states in perovskite solar cells. J. Phys. Chem. Lett. 6, 2350–2354 (2015).

  123. 123.

    et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

  124. 124.

    , , & Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015).

  125. 125.

    & Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014).

  126. 126.

    , , , & Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, 2408–2413 (2014).

  127. 127.

    , , & The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

  128. 128.

    , , & Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3Pbl3. J. Am. Chem. Soc. 136, 14570–14575 (2014).

  129. 129.

    et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

  130. 130.

    , & Doping of CuInSe2 crystals: evidence for influence of thermal defects. Chem. Mater. 1, 202–207 (1989).

  131. 131.

    , , & Development of p+, p, i, n, and n+-type CuInGaSe2 layers for applications in graded bandgap multilayer thin-film solar cells. J. Electrochem. Soc. 154, H466–H471 (2007).

  132. 132.

    , , , & Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 1791–1794 (2015).

  133. 133.

    et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).

  134. 134.

    et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

  135. 135.

    et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014).

  136. 136.

    et al. Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells. Sci. Rep. 4, 6752 (2014).

  137. 137.

    et al. Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013).

  138. 138.

    & Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Appl. Phys. Lett. 54, 558–560 (1989).

  139. 139.

    , , & O2 and organic semiconductors: electronic effects. Org. Electron. 14, 966–972 (2013).

  140. 140.

    et al. Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. J. Appl. Phys. 86, 497–505 (1999).

  141. 141.

    , & Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015).

  142. 142.

    et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

  143. 143.

    et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

  144. 144.

    et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

  145. 145.

    et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015).

  146. 146.

    et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

  147. 147.

    et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

  148. 148.

    , , , & Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

  149. 149.

    et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

  150. 150.

    et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

  151. 151.

    et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2, 091101 (2014).

  152. 152.

    et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

  153. 153.

    et al. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

  154. 154.

    et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

  155. 155.

    , & Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

  156. 156.

    et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

  157. 157.

    , , & Perovskite solar cells: do we know what we do not know? J. Phys. Chem. Lett. 6, 279–282 (2015).

  158. 158.

    in CRC Handbook of Solid State Electrochemistry (eds Gellings, P. J. & Bouwmeester, H. J. M.) 223–268 (CRC, 1997).

  159. 159.

    et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today 17, 217–223 (2014).

  160. 160.

    et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

  161. 161.

    et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, (2015).

  162. 162.

    et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015).

  163. 163.

    et al. Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014).

  164. 164.

    et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  165. 165.

    et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

  166. 166.

    et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

  167. 167.

    et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

  168. 168.

    et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

  169. 169.

    , , , & Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 5 (2015).

  170. 170.

    , , , & Cu(In,Ga)Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999).

  171. 171.

    , & Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983).

  172. 172.

    Structure and ionic conductivity of CuCdCl3. Solid State Ionics 25, 105–108 (1987).

  173. 173.

    , , , & Structure and ionic transport properties of some Cu2PbBr4, Cu2SNI4 compounds. Solid State Ionics 44, 99–105 (1990).

  174. 174.

    & Electrical conductivity of CuSNI3, CuPbI3 and KPbI3. Solid State Ionics 25, 1–7 (1987).

  175. 175.

    et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014).

  176. 176.

    , , , & The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. Engl. 54, 7905–7910 (2015).

  177. 177.

    , , & Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

  178. 178.

    , , & First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

  179. 179.

    , & Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 12437–12441 (2015).

  180. 180.

    , & Proton migration and defect interactions in the CaZrO3 orthorhombic perovskite: a quantum mechanical study. Chem. Mat. 13, 2049–2055 (2001).

  181. 181.

    et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

  182. 182.

    , , , & Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014).

  183. 183.

    , , , & The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).

  184. 184.

    , & Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

  185. 185.

    & Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

  186. 186.

    et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

  187. 187.

    , & Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015).

  188. 188.

    et al. Ferroelectric solar cells based on inorganic–organic hybrid perovskites. J. Mater. Chem. A 3, 7699–7705 (2015).

  189. 189.

    et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

  190. 190.

    et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

  191. 191.

    , , & Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015).

  192. 192.

    et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

  193. 193.

    et al. Ferroelectricity of CH3NH3Pbl3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015).

  194. 194.

    et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

  195. 195.

    et al. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 10456–10459 (2015).

  196. 196.

    , & Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).

  197. 197.

    et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015).

  198. 198.

    et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

  199. 199.

    , , , & Direct Experimental Evidence for Absence of Polarity in CH3NH3PbBr3 Crystals (MRS Fall Rump Session, 2015).

  200. 200.

    et al. Charge accumulation and hysteresis in perovskite-based solar cells: an electro-optical analysis. Adv. Energy Mater. 5, (2015).

  201. 201.

    et al. The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817–9823 (2015).

  202. 202.

    & Methylammonium lead triiodide perovskite solar cells: a new paradigm in photovoltaics. MRS Bull. 40, 641–645 (2015).

  203. 203.

    et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during JV hysteresis. J. Am. Chem. Soc. 137, 5087–5099 (2015).

  204. 204.

    , , & Simple characterization of electronic processes in perovskite photovoltaic cells. Appl. Phys. Lett. 106, 093903 (2015).

  205. 205.

    et al. Charge Recombination and Transport in Hybrid Perovskite Solar Cells (MRS Fall Conference, 2013).

  206. 206.

    et al.Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

Download references

Acknowledgements

The authors thank M. Bonn, E. Canovas, V. Podzorov, O. Yaffe and S. Tretiak, for sharing preprints of their results. They thank I. Balberg, A. Kahn, L. Leiserowitz, I. Lubomirsky, O. M. Stafsudd and X. Y. Zhu for illuminating discussions. The authors' work is or was supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Israel Ministry of Science, Israel National Nano-Initiative, a research grant from Dana and Yossie Hollander and the Austrian Science Fund (FWF):J3608−N20 (to D.A.E.). T.M.B. thanks the WIS for an Alternative Sustainable Energy Research Initiative (AERI) postdoctoral fellowship. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.

Author information

Author notes

    • Thomas M. Brenner
    •  & David A. Egger

    These authors contributed equally to this work.

Affiliations

  1. Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel.

    • Thomas M. Brenner
    • , David A. Egger
    • , Leeor Kronik
    • , Gary Hodes
    •  & David Cahen

Authors

  1. Search for Thomas M. Brenner in:

  2. Search for David A. Egger in:

  3. Search for Leeor Kronik in:

  4. Search for Gary Hodes in:

  5. Search for David Cahen in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Leeor Kronik or Gary Hodes or David Cahen.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2015.7

Further reading