Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning

Abstract

Free Water Imaging is a novel diffusion magnetic resonance (MR) imaging method that is able to separate changes affecting the extracellular space from those that reflect changes in neuronal cells and processes. A previous Free Water Imaging study in schizophrenia identified significantly greater extracellular water volume in the early stages of the disorder; however, its clinical and functional sequelae have not yet been investigated. Here, we applied Free Water Imaging to a larger cohort of 63 first-episode patients with psychosis and 70 healthy matched controls to better understand the functional significance of greater extracellular water. We used diffusion MR imaging data and the Tract-Based Spatial Statistics analytic pipeline to first analyze fractional anisotropy (FA), the most commonly employed metric for assessing white matter. This comparison was then followed by Free Water Imaging analysis, where two parameters, the fractional volume of extracellular free-water (FW) and cellular tissue FA (FA-t), were estimated and compared across the entire white matter skeleton between groups, and correlated with cognitive measures at baseline and following 12 weeks of antipsychotic treatment. Our results indicated lower FA across the whole brain in patients compared with healthy controls that overlap with significant increases in FW, with only limited decreases in FA-t. In addition, higher FW correlated with better neurocognitive functioning following 12 weeks of antipsychotic treatment. We believe this is the first study to suggest that an extracellular water increase during the first-episode of psychosis, which may be indicative of an acute neuroinflammatory process, and/or cerebral edema may predict better functional outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mueser KT, McGurk SR . Schizophrenia. Lancet 2004; 363: 2063–2072.

    Article  PubMed  Google Scholar 

  2. Friston KJ, Frith CD . Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 89–97.

    CAS  PubMed  Google Scholar 

  3. Friston KJ . Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 1999; 395: 68–79.

    Article  CAS  PubMed  Google Scholar 

  4. Kochunov P, Hong LE . Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull 2014; 40: 721–728.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD . Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treatment 2011; 2011: 325789–13.

    PubMed  PubMed Central  Google Scholar 

  6. Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM et al. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. Cereb Cortex 2013; 23: 2044–2057.

    Article  PubMed  Google Scholar 

  7. Basser PJ, Mattiello J, LeBihan D . MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubicki M, McCarley R, Westin C-F, Park H-J, Maier S, Kikinis R et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007; 41: 15–30.

    Article  PubMed  Google Scholar 

  9. Wheeler AL, Voineskos AN . A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8: 653.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Assaf Y, Pasternak O . Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51–61.

    Article  CAS  PubMed  Google Scholar 

  11. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y . Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009; 62: 717–730.

    PubMed  Google Scholar 

  12. Albi A, Pasternak O, Minati L, Marizzoni M, Bartrés-Faz D, Bargallo N et al. Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: a longitudinal multisite study of healthy elderly subjects. Hum Brain Mapp 2016; 38: 12–26.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pasternak O, Westin C-F, Bouix S, Seidman LJ, Goldstein JM, Woo T-UW et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci 2012; 32: 17365–17372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: An [(11)C]PBR28 PET brain imaging study. Am J Psychiatry 2015; 173: 44–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    Article  PubMed  Google Scholar 

  16. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasternak O, Westin C-F, Dahlben B, Bouix S, Kubicki M . The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia. Schizophr Res 2014; 161: 113–118.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Robinson DG, Gallego JA, John M, Petrides G, Hassoun Y, Zhang J-P et al. A randomized comparison of aripiprazole and risperidone for the acute treatment of first-episode schizophrenia and related disorders: 3-month outcomes. Schizophr Bull 2015; 41: 1227–1236.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Overall JE, Gorhham DR . The Brief Psychiatric Rating Scale. Physiol Rep 1962; 10: 799–812.

    Google Scholar 

  20. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487–1505.

    Article  PubMed  Google Scholar 

  21. Jahanshad N, Kochunov PV, Sprooten E, Mandl RC, Nichols TE, Almasy L et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 2013; 81: 455–469.

    Article  PubMed  Google Scholar 

  22. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 2014; 8: 153–182.

    PubMed  PubMed Central  Google Scholar 

  23. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE . Permutation inference for the general linear model. Neuroimage 2014; 92: 381–397.

    Article  PubMed  Google Scholar 

  24. Smith SM, Nichols TE . Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009; 44: 83–98.

    Article  PubMed  Google Scholar 

  25. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1239: 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  PubMed Central  Google Scholar 

  28. Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, International Inflammatory Bowel Disease Genetics Consortium (IIBDGC), International Inflammatory Bowel Disease Genetics Consortium IIBDGC. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci 2015; 18: 199–209.

    Article  Google Scholar 

  29. Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, Moreira JCF et al. Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 2012; 46: 819–824.

    Article  PubMed  Google Scholar 

  30. Bentsen H, Solberg DK, Refsum H, Bøhmer T . Clinical and biochemical validation of two endophenotypes of schizophrenia defined by levels of polyunsaturated fatty acids in red blood cells. Prostaglandins Leukot Essent Fatty Acids 2012; 87: 35–41.

    Article  CAS  PubMed  Google Scholar 

  31. Hoen WP, Lijmer JG, Duran M, Wanders RJA, van Beveren NJM, de Haan L . Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: a meta-analysis. Psychiatry Res 2013; 207: 1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    Article  CAS  PubMed  Google Scholar 

  33. Roussos P, Katsel P, Davis KL, Siever LJ, Haroutunian V . A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Arch Gen Psychiatry 2012; 69: 1205–1213.

    Article  PubMed  Google Scholar 

  34. Upthegrove R, Manzanares-Teson N, Barnes NM . Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 2014; 155: 101–108.

    Article  PubMed  Google Scholar 

  35. Petrikis P, Voulgari PV, Tzallas AT, Archimandriti DT, Skapinakis P, Mavreas V . Cytokine profile in drug-naïve, first episode patients with psychosis. J Psychosom Res 2015; 79: 324–327.

    Article  PubMed  Google Scholar 

  36. Prasad KM, Upton CH, Nimgaonkar VL, Keshavan MS . Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: an integrated DTI study. Schizophr Res 2015; 161: 119–125.

    Article  PubMed  Google Scholar 

  37. Bulzacka E, Boyer L, Schürhoff F, Godin O, Berna F, Brunel L et al. Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull 2016; 42: 1290–1302.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R . C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 2007; 93: 261–265.

    Article  PubMed  Google Scholar 

  39. Najjar S, Pearlman DM . Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161: 102–112.

    Article  PubMed  Google Scholar 

  40. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 115–121.

    Article  CAS  PubMed  Google Scholar 

  41. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E . Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008; 63: 801–808.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer U, Schwarz MJ, Müller N . Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 2011; 132: 96–110.

    Article  CAS  PubMed  Google Scholar 

  43. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T . Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 2002; 8: 101.

    Article  PubMed  Google Scholar 

  44. Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ . Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 2014; 75: 361–370.

    Article  PubMed  Google Scholar 

  45. Skelley SL, Goldberg TE, Egan MF, Weinberger DR, Gold JM . Verbal and visual memory: characterizing the clinical and intermediate phenotype in schizophrenia. Schizophr Res 2008; 105: 78–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park S, Gooding DC . Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophr Res Cogn 2014; 1: 127–136.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Joseph J, Depp C, Martin AS, Daly RE, Glorioso DK, Palmer BW et al. Associations of high sensitivity C-reactive protein levels in schizophrenia and comparison groups. Schizophr Res 2015; 168: 456–460.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J, Ochoa S et al. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treatment 2012; 2012: 1–9.

    Google Scholar 

  49. Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y . Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 303–307.

    Article  CAS  PubMed  Google Scholar 

  50. Pasternak O, Kubicki M, Shenton ME . In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173: 200–212.

    Article  PubMed  Google Scholar 

  51. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    Article  CAS  PubMed  Google Scholar 

  52. Boksa P . Abnormal synaptic pruning in schizophrenia: urban myth or reality? J Psychiatry Neurosci 2012; 37: 75–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Mental Health to Dr. Lyall (5T32MH016259-35), Dr. Kubicki (R01AG042512 and R01MH102377), Dr. Pasternak (R01MH108574, R01MH074794, P41EB015902 and R01AG042512, R01MH102377), Dr. Szeszko (R01 MH076995), Dr. Robinson (R01 MH060004) and Dr. Gallego (K23 MH100264), the NSLIJ Research Institute General Clinical Research Center (M01 RR018535), an Advanced Center for Intervention and Services Research (P30 MH090590), a Center for Intervention Development and Applied Research (P50 MH080173) and NARSAD Young Investigator grants (to Dr. Szeszko and Dr. Pasternak).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Lyall.

Ethics declarations

Competing interests

For a complete list of Dr. Fava’s disclosures, please see http://mghcme.org/faculty/faculty-detail/maurizio_fava#disclosure. Dr. Malhotra has been a consultant for Genomind, Forum Pharmaceuticals and Takeda Pharmaceuticals. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyall, A., Pasternak, O., Robinson, D. et al. Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning. Mol Psychiatry 23, 701–707 (2018). https://doi.org/10.1038/mp.2017.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.43

This article is cited by

Search

Quick links