Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GABAB receptor cell-surface export is controlled by an endoplasmic reticulum gatekeeper

Subjects

Abstract

Endoplasmic reticulum (ER) release and cell-surface export of many G protein-coupled receptors (GPCRs) are tightly regulated. For gamma-aminobutyric acid (GABA)B receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell-surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gatekeepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Doherty GJ, McMahon HT . Mechanisms of Endocytosis. Annu Rev Biochem 2009; 78: 31.31–31.46.

    Article  Google Scholar 

  2. Aridor M, Hannan LA . Traffic Jams II: An Update of Diseases of Intracellular Transport. Traffic 2002; 3: 781–790.

    Article  CAS  Google Scholar 

  3. Hein L, Ishii K, Coughlin SR, Kobilka BK . Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem 1994; 269: 27719–27726.

    CAS  PubMed  Google Scholar 

  4. Brismar H, Asghar M, Carey RM, Greengard P, Aperia A . Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci USA 1998; 95: 5573–5578.

    Article  CAS  Google Scholar 

  5. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H . RTP family members induce functional expression of mammalian odorant receptors. Cell 2004; 119: 679–691.

    Article  CAS  Google Scholar 

  6. Achour L, Labbe-Juillie C, Scott MGH, Marullo S . An escort for G Protein Coupled Receptors to find their path: implication for regulation of receptor density at the cell surface. Trends Pharmacol Sci 2008; 29: 528–535.

    Article  CAS  Google Scholar 

  7. Achour L, Scott MG, Shirvani H, Thuret A, Bismuth G, Labbe-Jullie C et al. CD4 - CCR5 interaction in intracellular compartments contributes to receptor expression at the cell surface. Blood 2009; 113: 1938–1947.

    Article  CAS  Google Scholar 

  8. Holtback U, Brismar H, DiBona GF, Fu M, Greengard P, Aperia A . Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci USA 1999; 96: 7271–7275.

    Article  CAS  Google Scholar 

  9. Shirvani H, Achour L, Scott MGH, Thuret A, Bismuth G, Labbe-Juillie C et al. Internal stores of CCR5 in blood cells. Blood 2011; 118: 1175–1176.

    Article  CAS  Google Scholar 

  10. Farhan H, Rabouille C . Signalling to and from the secretory pathway. J Cell Sci 2011; 124: 171–180.

    Article  CAS  Google Scholar 

  11. Kusek J, Yang Q, Witek M, Gruber CW, Nanoff C, Freissmuth M . Chaperoning of the A1-adenosine receptor by endogenous adenosine - an extension of the retaliatory metabolite concept. Mol Pharmacol 2015; 87: 39–51.

    Article  Google Scholar 

  12. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al. RAMPs regulate the transport and ligand specificity of the calcitonin- receptor-like receptor. Nature 1998; 393: 333–339.

    Article  CAS  Google Scholar 

  13. Bermak JC, Li M, Bullock C, Zhou QY . Regulation of transport of the dopamine D1 receptor by a new membrane- associated ER protein. Nat Cell Biol 2001; 3: 492–498.

    Article  CAS  Google Scholar 

  14. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006; 311: 77–80.

    Article  CAS  Google Scholar 

  15. Bergmayr C, Thurner P, Keuerleber S, Kudlacek O, Nanoff C, Freissmuth M et al. Recruitment of a cytoplasmic chaperone relay by the A2A adenosine receptor. J Biol Chem 2013; 288: 28831–28844.

    Article  CAS  Google Scholar 

  16. Brock C, Boudier L, Maurel D, Blahos J, Pin JP . Assembly-dependent surface targeting of the heterodimeric GABAB Receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 2005; 16: 5572–5578.

    Article  CAS  Google Scholar 

  17. Cunningham M, McIntosh K, Pediani JD, Robben J, Cooke AE, Nilsson M et al. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4). J Biol Chem 2012; 287: 16656–16669.

    Article  CAS  Google Scholar 

  18. Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S . Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 2005; 120: 223–235.

    Article  CAS  Google Scholar 

  19. Benke D . Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. Adv Pharmacol 2010; 58: 93–111.

    Article  CAS  Google Scholar 

  20. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998; 396: 674–679.

    Article  CAS  Google Scholar 

  21. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998; 396: 683–687.

    Article  CAS  Google Scholar 

  22. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998; 396: 679–682.

    Article  CAS  Google Scholar 

  23. Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang YP et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 2006; 50: 589–601.

    Article  CAS  Google Scholar 

  24. Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ . Intracellular retention of recombinant GABAB receptors. J Biol Chem 1998; 273: 26361–26367.

    Article  CAS  Google Scholar 

  25. Margeta-Mitrovic M, Jan YN, Jan LY . A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 2000; 27: 97–106.

    Article  CAS  Google Scholar 

  26. Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 2001; 21: 1189–1202.

    Article  CAS  Google Scholar 

  27. Restituito S, Couve A, Bawagan H, Jourdain S, Pangalos MN, Calver AR et al. Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 2005; 28: 747–756.

    Article  CAS  Google Scholar 

  28. Kniazeff J, Galvez T, Labesse G, Pin JP . No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002; 22: 7352–7361.

    Article  CAS  Google Scholar 

  29. Margeta-Mitrovic M, Jan YN, Jan LY . Function of GB1and GB2 subunits in G protein coupling of GABA(B) receptors. Proc Natl Acad Sci USA 2001; 98: 14649–14654.

    Article  CAS  Google Scholar 

  30. Robbins MJ, Calver AR, Filippov AK, Hirst WD, Russell RB, Wood MD et al. GABA(B2) is essential for G-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 2001; 21: 8043–8052.

    Article  CAS  Google Scholar 

  31. Villemure JF, Adam L, Bevan NJ, Gearing K, Chenier S, Bouvier M . Subcellular distribution of GABA(B) receptor homo- and hetero-dimers. Biochem J 2005; 388: 47–55.

    Article  CAS  Google Scholar 

  32. Laffray S, Bouali-Benazzouz R, Papon MA, Favereaux A, Jiang Y, Holm T et al. Impairment of GABAB receptor dimer by endogenous 14-3-3zeta in chronic pain conditions. EMBO J 2012; 31: 3239–3251.

    Article  CAS  Google Scholar 

  33. Maier PJ, Zemoura K, Acuna MA, Yevenes GE, Zeilhofer HU, Benke D . Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-Induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). J Biol Chem 2014; 289: 12896–12907.

    Article  CAS  Google Scholar 

  34. Kantamneni S, Holman D, Wilkinson KA, Nishimune A, Henley JM . GISP increases neurotransmitter receptor stability by down-regulating ESCRT-mediated lysosomal degradation. Neurosci Lett 2009; 452: 106–110.

    Article  CAS  Google Scholar 

  35. Abdul-Ghani M, Gougeon PY, Prosser DC, Da-Silva LF, Ngsee JK . PRA isoforms are targeted to distinct membrane compartments. J Biol Chem 2001; 276: 6225–6233.

    Article  CAS  Google Scholar 

  36. Fo CS, Coleman CS, Wallick CJ, Vine AL, Bachmann AS . Genomic organization, expression profile, and characterization of the new protein PRA1 domain family, member 2 (PRAF2). Gene 2006; 371: 154–165.

    Article  CAS  Google Scholar 

  37. Sivars U, Aivazian D, Pfeffer SR . Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003; 425: 856–859.

    Article  CAS  Google Scholar 

  38. Lin CI, Orlov I, Ruggiero AM, Dykes-Hoberg M, Lee A, Jackson M et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 2001; 410: 84–88.

    Article  CAS  Google Scholar 

  39. Ruggiero AM, Liu Y, Vidensky S, Maier S, Jung E, Farhan H et al. The endoplasmic reticulum exit of glutamate transporter is regulated by the inducible mammalian Yip6b/GTRAP3-18 protein. J Biol Chem 2008; 283: 6175–6183.

    Article  CAS  Google Scholar 

  40. Schweneker M, Bachmann AS, Moelling K . JM4 is a four-transmembrane protein binding to the CCR5 receptor. FEBS Lett 2005; 579: 1751–1758.

    Article  CAS  Google Scholar 

  41. Koomoa DL, Go RC, Wester K, Bachmann AS . Expression profile of PRAF2 in the human brain and enrichment in synaptic vesicles. Neurosci Lett 2008; 436: 171–176.

    Article  CAS  Google Scholar 

  42. Borsics T, Lundberg E, Geerts D, Koomoa DL, Koster J, Wester K et al. Subcellular distribution and expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in malignant glioma: influence on cell survival and migration. Cancer Sci 2010; 101: 1624–1631.

    Article  CAS  Google Scholar 

  43. Petaja-Repo UE, Hogue M, Laperriere A, Walker P, Bouvier M . Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 2000; 275: 13727–13736.

    Article  CAS  Google Scholar 

  44. Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 2001; 20: 2152–2159.

    Article  CAS  Google Scholar 

  45. Marullo S, Bouvier M . Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 2007; 28: 362–365.

    Article  CAS  Google Scholar 

  46. Achour L, Kamal M, Jockers R, Marullo S . Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization. Methods Mol Biol 2011; 756: 183–200.

    Article  CAS  Google Scholar 

  47. Pinard A, Seddik R, Bettler B . GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 2010; 58: 231–255.

    Article  CAS  Google Scholar 

  48. Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Luscher C . Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci 2004; 7: 153–159.

    Article  CAS  Google Scholar 

  49. Koob GF, Swerdlow NR . The functional output of the mesolimbic dopamine system. Ann NY Acad Sci 1988; 537: 216–227.

    Article  CAS  Google Scholar 

  50. Labouebe G, Lomazzi M, Cruz HG, Creton C, Lujan R, Li M et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 2007; 10: 1559–1568.

    Article  CAS  Google Scholar 

  51. Erhardt S, Mathe JM, Chergui K, Engberg G, Svensson TH . GABA(B) receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivo. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 173–180.

    Article  CAS  Google Scholar 

  52. Smolders De Klippel I, Sarre N, Ebinger S, Michotte G, Tonic Y . GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. Eur J Physiol 1995; 284: 83–91.

    Google Scholar 

  53. Bartoletti M, Gubellini C, Ricci F, Gaiardi M . The GABAB agonist baclofen blocks the expression of sensitisation to the locomotor stimulant effect of amphetamine. Behav Pharmacol 2004; 15: 397–401.

    Article  CAS  Google Scholar 

  54. Bartoletti M, Gubellini C, Ricci F, Gaiardi M . Baclofen blocks the development of sensitization to the locomotor stimulant effect of amphetamine. Behav Pharmacol 2005; 16: 553–558.

    Article  CAS  Google Scholar 

  55. Zhou W, Mailloux AW, McGinty JF . Intracerebral baclofen administration decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum. Neuropsychopharmacology 2005; 30: 880–890.

    Article  CAS  Google Scholar 

  56. Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 2001; 31: 47–58.

    Article  CAS  Google Scholar 

  57. Pycock CJ . Turning behaviour in animals. Neuroscience 1980; 5: 461–514.

    Article  CAS  Google Scholar 

  58. Koshikawa N . Role of the nucleus accumbens and the striatum in the production of turning behaviour in intact rats. Rev Neurosci 1994; 5: 331–346.

    Article  CAS  Google Scholar 

  59. Kitamura M, Koshikawa N, Yoneshige N, Cools AR . Behavioural and neurochemical effects of cholinergic and dopaminergic agonists administered into the accumbal core and shell in rats. Neuropharmacology 1999; 38: 1397–1407.

    Article  CAS  Google Scholar 

  60. Schwarting RK, Huston JP . Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49: 215–266.

    Article  CAS  Google Scholar 

  61. Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S et al. Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 2004; 24: 6086–6097.

    Article  CAS  Google Scholar 

  62. Vacher CM, Gassmann M, Desrayaud S, Challet E, Bradaia A, Hoyer D et al. Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice. J Neurochem 2006; 97: 979–991.

    Article  CAS  Google Scholar 

  63. Mombereau C, Kaupmann K, Gassmann M, Bettler B, van der Putten H, Cryan JF . Altered anxiety and depression-related behavior in mice lacking GABAB(2) receptor subunits. Neuroreport 2005; 16: 307–310.

    Article  CAS  Google Scholar 

  64. Colombo G, Melis S, Brunetti G, Serra S, Vacca G, Carai MA et al. GABA(B) receptor inhibition causes locomotor stimulation in mice. Eur J Physiol 2001; 433: 101–104.

    CAS  Google Scholar 

  65. Moore EM, Boehm SL 2nd . Site-specific microinjection of baclofen into the anterior ventral tegmental area reduces binge-like ethanol intake in male C57BL/6J mice. Behav Neurosci 2009; 123: 555–563.

    Article  CAS  Google Scholar 

  66. Spasic D, Raemaekers T, Dillen K, Declerck I, Baert V, Serneels L et al. Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway. J Cell Biol 2007; 176: 629–640.

    Article  CAS  Google Scholar 

  67. Dwyer ND, Troemel ER, Sengupta P, Bargmann CI . Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 1998; 93: 455–466.

    Article  CAS  Google Scholar 

  68. Metherell LA, Chapple JP, Cooray S, David A, Becker C, Ruschendorf F et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet 2005; 37: 166–170.

    Article  CAS  Google Scholar 

  69. Donato R . Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999; 1450: 191–231.

    Article  CAS  Google Scholar 

  70. Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Llievano M, Ghose S et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2010; 2: 54ra76.

    Article  Google Scholar 

  71. Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA . G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 2007; 59: 225–250.

    Article  CAS  Google Scholar 

  72. Valenzano KJ, Benjamin ER, René P, Bouvier M Pharmacological chaperons: potential for the treatment of hereditary diseases caused by mutations in G protein-coupled receptors. In: Gilchrist A (ed). GPCR Molecular Pharmacology and Drug targeting: Shifting Paradigms and New Directions. Wiley: Hoboken, NJ, USA, 2010, pp 460–491.

    Book  Google Scholar 

Download references

Acknowledgements

We thank Drs M Scott (Institut Cochin), M Bouvier (Université de Montréal, Canada) and J Epelbaum (Centre de Psychiatrie et Neurosciences, Paris) for their comments; Dr L Maroteaux (Institut du Fer à Moulin, Paris) for hosting studies in mice; Dr C Labbé-Jullié (Institut Cochin) for preliminary studies; Dr E Tzavara (Unité de Physiopathologie des Maladies du Système Nerveux, Paris) for helpful discussions; the Cochin Institute imaging facility for technical support. This work was supported by grants from the Ligue Contre le Cancer, comité de l’Oise to SD; from the French Agency for AIDS Research (ANRS-09) and the Fondation pour la Recherche Médicale (Equipe FRM-2012) to SM; from the Ecole de Neuroscience de Paris and the INSERM ATIP-Avenir to MM; from the NCCR ‘Synapsy, Synaptic Bases of Mental Diseases’ to BB. SM team is member of the ‘Who-am-I’ research consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Marullo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doly, S., Shirvani, H., Gäta, G. et al. GABAB receptor cell-surface export is controlled by an endoplasmic reticulum gatekeeper. Mol Psychiatry 21, 480–490 (2016). https://doi.org/10.1038/mp.2015.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.72

This article is cited by

Search

Quick links