Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1

Abstract

Exploring drug targets based on disease-associated molecular mechanisms during development is crucial for the generation of novel prevention and treatment strategies for neurodevelopmental psychiatric conditions. We report that prefrontal cortex (PFC)-specific postnatal knockdown of DISC1 via in utero electroporation combined with an inducible knockdown expression system drives deficits in synaptic GABAA function and dendritic development in pyramidal neurons, as well as abnormalities in sensorimotor gating, albeit without profound memory deficits. We show for the first time that DISC1 is specifically involved in regulating cell surface expression of α2 subunit-containing GABAA receptors in immature developing neurons, but not after full maturation. Notably, pharmacological intervention with α2/3 subtype-selective GABAA receptor positive allosteric modulators during the early postnatal period ameliorates dendritic deficits and behavioral abnormalities induced by knockdown of DISC1. These findings highlight a critical role of DISC1-mediated disruption of postnatal GABA signaling in aberrant PFC maturation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fritschy JM, Panzanelli P . GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39: 1845–1865.

    Article  PubMed  Google Scholar 

  2. Ben-Ari Y . Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002; 3: 728–739.

    Article  CAS  PubMed  Google Scholar 

  3. Cancedda L, Fiumelli H, Chen K, Poo MM . Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 2007; 27: 5224–5235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Magueresse C, Monyer H . GABAergic interneurons shape the functional maturation of the cortex. Neuron 2013; 77: 388–405.

    Article  CAS  PubMed  Google Scholar 

  5. Charych EI, Liu F, Moss SJ, Brandon NJ . GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 2009; 57: 481–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cellot G, Cherubini E . GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr 2014; 2: 70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoftman GD, Lewis DA . Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 2011; 37: 493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rudolph U, Knoflach F . Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 2011; 10: 685–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crestani F, Martin JR, Mohler H, Rudolph U . Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 2000; 131: 1251–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Han S, Tai C, Jones CJ, Scheuer T, Catterall WA . Enhancement of inhibitory neurotransmission by GABAA receptors having alpha2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron 2014; 81: 1282–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA et al. Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 2008; 165: 1585–1593.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buchanan RW, Keefe RS, Lieberman JA, Barch DM, Csernansky JG, Goff DC et al. A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol Psychiatry 2011; 69: 442–449.

    Article  CAS  PubMed  Google Scholar 

  13. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    CAS  PubMed  Google Scholar 

  14. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamiya A, Sedlak TW, Pletnikov MV . DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders. Front Psychiatry 2012; 3: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 2012; 148: 1051–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manent JB, Wang Y, Chang Y, Paramasivam M, LoTurco JJ . Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat Med 2009; 15: 84–90.

    Article  CAS  PubMed  Google Scholar 

  18. LoTurco J, Manent JB, Sidiqi F . New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex 2009; 19: i120–i125.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taniguchi Y, Young-Pearse T, Sawa A, Kamiya A . In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: from genes to circuits and behaviors. Neuroscientist 2012; 18: 169–179.

    Article  PubMed  Google Scholar 

  20. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010; 65: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 2006; 103: 16906–16911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takemoto-Kimura S, Ageta-Ishihara N, Nonaka M, Adachi-Morishima A, Mano T, Okamura M et al. Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma. Neuron 2007; 54: 755–770.

    Article  CAS  PubMed  Google Scholar 

  23. Moss SJ, Smart TG . Constructing inhibitory synapses. Nat Rev Neurosci 2001; 2: 240–250.

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13: 327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cellot G, Cherubini E . Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front Neural Circuits 2013; 7: 136.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ et al. Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem 2011; 286: 21667–21677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuda T, Cepko CL . Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci USA 2007; 104: 1027–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishizuka K, Kamiya A, Oh CE, Kanki H, Seshadri S, Robinson FJ et al. A DISC1-dependent switch from neuronal proliferation to migration in the developing cortex. Nature 2011; 473: 92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  Google Scholar 

  30. Kubo K, Tomita K, Uto A, Kuroda K, Seshadri S, Cohen J et al. Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochem Biophys Res Commun 2010; 400: 631–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marin O, Rubenstein JL . Cell migration in the forebrain. Annu Rev Neurosci 2003; 26: 441–483.

    Article  CAS  PubMed  Google Scholar 

  32. Sauvageot CM, Stiles CD . Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 2002; 12: 244–249.

    Article  CAS  PubMed  Google Scholar 

  33. Seshadri S, Kamiya A, Yokota Y, Prikulis I, Kano S, Hayashi-Takagi A et al. Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci USA 2010; 107: 5622–5627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konur S, Ghosh A . Calcium signaling and the control of dendritic development. Neuron 2005; 46: 401–405.

    Article  CAS  PubMed  Google Scholar 

  35. Swerdlow NR, Geyer MA, Braff DL . Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 2001; 156: 194–215.

    Article  CAS  Google Scholar 

  36. Lee Y, Davis M . Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 1997; 17: 6434–6446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koch M . The neurobiology of startle. Prog Neurobiol 1999; 59: 107–128.

    Article  CAS  PubMed  Google Scholar 

  38. Alhambra C, Becker C, Blake T, Chang AH, Damewood JR Jr, Daniels T et al. Development and SAR of functionally selective allosteric modulators of GABAA receptors. Bioorg Med Chem 2011; 19: 2927–2938.

    Article  CAS  PubMed  Google Scholar 

  39. Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 2010; 65: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T et al. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 2007; 27: 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porteous DJ, Millar JK, Brandon NJ, Sawa A . DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 2011; 17: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fendt M, Schwienbacher I, Koch M . Amygdaloid N-methyl-D-aspartate and gamma-aminobutyric acid(A) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 2000; 98: 55–60.

    Article  CAS  PubMed  Google Scholar 

  43. Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014; 343: 675–679.

    Article  CAS  PubMed  Google Scholar 

  44. Wang DD, Kriegstein AR . Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb Cortex 2011; 21: 574–587.

    Article  PubMed  Google Scholar 

  45. Young-Pearse TL, Suth S, Luth ES, Sawa A, Selkoe DJ . Biocemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development. J Neurosci 2010; 30: 10431–10440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 2008; 105: 7076–7081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H et al. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 2008; 13: 173–186, 115.

    Article  CAS  PubMed  Google Scholar 

  48. Lee FH, Fadel MP, Preston-Maher K, Cordes SP, Clapcote SJ, Price DJ et al. Disc1 point mutations in mice affect development of the cerebral cortex. J Neurosci 2011; 31: 3197–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008; 28: 10893–10904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maher BJ, LoTurco JJ . Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS One 2012; 7: e34053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Pamela Talalay and Keri Martinowich, as well as Ms Nada Rendradjaja for critical reading of the manuscript. We thank Kozo Kaibuchi and Keisuke Kuroda for providing us with DISC1 antibodies and Dr Miho Terunuma for advice on biotinylation assays. This work was supported by R01 MH-091230 (AK), P50 MH-094268 (AK), R21AT008547 (AK), K01 MH-086050 (BJM), Brain & Behavior Research Foundation (AK) and Brain Science Foundation (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kamiya.

Ethics declarations

Competing interests

AC and NJB are full-time employees and shareholders in AstraZeneca. SJM serves as a consultant for SAGE therapeutics and AstraZeneca, relationships that are regulated by Tufts University.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, A., Taniguchi, Y., Rannals, M. et al. Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Mol Psychiatry 21, 1449–1459 (2016). https://doi.org/10.1038/mp.2015.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.203

This article is cited by

Search

Quick links