Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target

Abstract

Aberrant DNA methylation mediated by deregulation of DNA methyltransferases (DNMT) is a key hallmark of acute myeloid leukemia (AML), yet efforts to target DNMT deregulation for drug development have lagged. We previously demonstrated that upregulation of fatty acid-binding protein 4 (FABP4) promotes AML aggressiveness through enhanced DNMT1-dependent DNA methylation. Here, we demonstrate that FABP4 upregulation in AML cells occurs through vascular endothelial growth factor (VEGF) signaling, thus elucidating a crucial FABP4-DNMT1 regulatory feedback loop in AML biology. We show that FABP4 dysfunction by its selective inhibitor BMS309403 leads to downregulation of DNMT1, decrease of global DNA methylation and re-expression of p15INK4B tumor suppressor gene by promoter DNA hypomethylation in vitro, ex vivo and in vivo. Functionally, BMS309403 suppresses cell colony formation, induces cell differentiation, and, importantly, impairs leukemic disease progression in mouse models of leukemia. Our findings highlight AML-promoting properties of the FABP4-DNMT1 vicious loop, and identify an attractive class of therapeutic agents with a high potential for clinical use in AML patients. The results will also assist in establishing the FABP4-DNMT1 loop as a target for therapeutic discovery to enhance the index of current epigenetic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Furuhashi M, Hotamisligil GS . Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7: 489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Storch J, Corsico B . The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Ann Rev Nutr 2008; 28: 73–95.

    Article  CAS  Google Scholar 

  3. Furuhashi M, Saitoh S, Shimamoto K, Miura T . Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin Med Insights Cardiol 2014; 8: 23–33.

    PubMed  Google Scholar 

  4. Zhang Y, Rao E, Zeng J, Hao J, Sun Y, Liu S et al. Adipose fatty acid binding protein promotes saturated fatty acid-induced macrophage cell death through enhancing ceramide production. J Immunol 2017; 198: 798–807.

    Article  CAS  PubMed  Google Scholar 

  5. Terra X, Quintero Y, Auguet T, Porras JA, Hernandez M, Sabench F et al. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur J Endocrinol 2011; 164: 539–547.

    Article  CAS  PubMed  Google Scholar 

  6. Yan F, Shen N, Pang JX, Zhang YW, Rao EY, Bode AM et al. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia 2017; 31: 1434–1442.

    Article  CAS  PubMed  Google Scholar 

  7. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011; 17: 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hancke K, Grubeck D, Hauser N, Kreienberg R, Weiss JM . Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res Treat 2010; 119: 367–367.

    Article  CAS  PubMed  Google Scholar 

  9. Lee D, Wada K, Taniguchi Y, Al-Shareef H, Masuda T, Usami Y et al. Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma. Oncol Rep 2014; 31: 1116–1120.

    Article  CAS  PubMed  Google Scholar 

  10. Hitchins MP . Constitutional epimutation as a mechanism for cancer causality and heritability? Nat Rev Cancer 2015; 15: 625–634.

    Article  CAS  PubMed  Google Scholar 

  11. Yan F, Shen N, Pang J, Xie D, Deng B, Molina JR et al. Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis 2014; 5: e1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzow MR et al. A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget 2014; 5: 5494–5509.

    PubMed  PubMed Central  Google Scholar 

  13. Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC et al. AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia 2015; 29: 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  14. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Liu Z, Xie Z, Pang J, Yu J, Lehmann E et al. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood 2008; 111: 2364–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kohli RM, Zhang Y . TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013; 502: 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fritz EL, Papavasiliou FN . Cytidine deaminases: AIDing DNA demethylation? Genes Dev 2010; 24: 2107–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen N, Yan F, Pang J, Zhao N, Gangat N, Wu LC et al. Inactivation of receptor tyrosine kinases reverts aberrant DNA methylation in acute myeloid leukemia. Clin Cancer Res 2017; 23: 6254–6266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan F, Shen N, Pang J, Molina JR, Yang P, Liu S . The DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT cooperatively promote resistance to 5-Aza-2'-deoxycytidine (Decitabine) and midostaurin (PKC412) in lung cancer cells. J Biol Chem 2015; 290: 18480–18494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jung KC, Park CH, Hwang YH, Rhee HS, Lee JH, Kim HK et al. Fatty acids, inhibitors for the DNA binding of c-Myc/Max dimer, suppress proliferation and induce apoptosis of differentiated HL-60 human leukemia cell. Leukemia 2006; 20: 122–127.

    Article  CAS  PubMed  Google Scholar 

  21. Malhi H, Bronk SF, Werneburg NW, Gores GJ . Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281: 12093–12101.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Liu S, Xie Z, Blum W, Perrotti D, Paschka P et al. Characterization of in vitro and in vivo hypomethylating effects of decitabine in acute myeloid leukemia by a rapid, specific and sensitive LC-MS/MS method. Nucleic Acids Res 2007; 35: e31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casalou C, Fragoso R, Nunes JF, Dias S . VEGF/PLGF induces leukemia cell migration via P38/ERK1/2 kinase pathway, resulting in Rho GTPases activation and caveolae formation. Leukemia 2007; 21: 1590–1594.

    Article  CAS  PubMed  Google Scholar 

  25. Frankel AE, Gill PS . VEGF and myeloid leukemias. Leuk Res 2004; 28: 675–677.

    Article  CAS  PubMed  Google Scholar 

  26. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loebig M, Klement J, Schmoller A, Betz S, Heuck N, Schweiger U et al. Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PloS One 2010; 5: e12610.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gomez-Ambrosi J, Catalan V, Rodriguez A, Ramirez B, Silva C, Gil MJ et al. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J Nutr Biochem 2010; 21: 774–780.

    Article  CAS  PubMed  Google Scholar 

  29. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 2010; 16: 903–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL . Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem 2014; 289: 23168–23176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sulsky R, Magnin DR, Huang Y, Simpkins L, Taunk P, Patel M et al. Potent and selective biphenyl azole inhibitors of adipocyte fatty acid binding protein (aFABP). Bioorg Med Chem Lett 2007; 17: 3511–3515.

    Article  CAS  PubMed  Google Scholar 

  32. Shimamoto T, Ohyashiki JH, Ohyashiki K . Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 2005; 29: 653–659.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuno N, Hoshino K, Nanri T, Kawakita T, Mitsuya H, Asou N . Transcriptional repression of the p15 gene predicts the clinical outcome of acute myeloblastic leukemia with intermediate and adverse cytogenetics. Leukemia 2004; 18: 1146–1148.

    Article  CAS  PubMed  Google Scholar 

  34. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003; 17: 1813–1819.

    Article  CAS  PubMed  Google Scholar 

  35. Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A et al. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia 2010; 24: 932–941.

    Article  CAS  PubMed  Google Scholar 

  36. Lee MY, Li H, Xiao Y, Zhou Z, Xu A, Vanhoutte PM . Chronic administration of BMS309403 improves endothelial function in apolipoprotein E-deficient mice and in cultured human endothelial cells. Br J Pharmacol 2011; 162: 1564–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lan H, Cheng CC, Kowalski TJ, Pang L, Shan L, Chuang CC et al. Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity. J Lipid Res 2011; 52: 646–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 355–368.

    Article  CAS  PubMed  Google Scholar 

  39. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported partially by The Hormel Foundation, National Cancer Institute (Bethesda, MD) grants R01CA149623, R01CA177679, R01CA180986, R21CA155915, R03CA186176 and the Predolin Foundation. We thank Dr Dong-Er Zhang for providing AE9a model, Dr Jill Suttles for providing FABP4-deficient mice and Dr Clara Nervi for providing the SKNO-1 cell line.

Author contributions

SJL and BL designed research; FY, NS, JXP, NZ and YWZ performed research; AA and MRL provided the leukemia patient samples; SJL, BL, MRL, FY, AM B and AA analyzed data and wrote the paper; SJL conceived ideas and oversaw the entire research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Li or S J Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Shen, N., Pang, J. et al. A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target. Leukemia 32, 865–873 (2018). https://doi.org/10.1038/leu.2017.307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.307

This article is cited by

Search

Quick links