Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myeloproliferative neoplasms

Irf8 regulates the progression of myeloproliferative neoplasm-like syndrome via Mertk signaling in zebrafish

Abstract

Interferon regulatory factor (IRF)-8 is a critical transcription factor involved in the pathogenesis of myeloid neoplasia. However, the underlying mechanisms in vivo are not well known. Investigation of irf8-mutant zebrafish in this study indicated that Irf8 is evolutionarily conserved as an essential neoplastic suppressor through tight control of the proliferation and longevity of myeloid cells. Surviving irf8 mutants quickly developed a myeloproliferative neoplasm (MPN)-like disease with enhanced output of the myeloid precursors, which recurred after transplantation. Multiple molecules presented notable alteration and Mertk signaling was aberrantly activated in the hematopoietic cells in irf8 mutants. Transgenic mertk overexpression in Tg(coro1a:mertk) zebrafish recapitulated the myeloid neoplasia-like syndrome in irf8 mutants. Moreover, functional interference with Mertk, via morpholino knockdown or genetic disruption, attenuated the myeloid expansion phenotype caused by Irf8 deficiency. Therefore, Mertk signaling is a critical downstream player in the Irf8-mediated regulation of the progression of myeloid neoplasia. Our study extends the understanding of the mechanisms underlying leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Paun A, Pitha PM . The IRF family, revisited. Biochimie 2007; 89: 744.

    Article  CAS  Google Scholar 

  2. Tailor P, Tamura T, Ozato K . The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008; 111: 1942.

    Article  CAS  Google Scholar 

  3. Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    Article  CAS  Google Scholar 

  4. Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, Gros P . A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. J Exp Med 2005; 201: 881–890.

    Article  CAS  Google Scholar 

  5. Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 1998; 91: 22–29.

    CAS  PubMed  Google Scholar 

  6. Hao SX, Ren R . Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20: 1149–1161.

    Article  CAS  Google Scholar 

  7. Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K . ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102: 4547–4554.

    Article  CAS  Google Scholar 

  8. Scheller M, Schoenheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A . Cross talk between Wnt/beta-catenin and Irf8 in leukemia progression and drug resistance. J Exp Med 2013; 210: 2239–2256.

    Article  CAS  Google Scholar 

  9. Schmidt M, Bies J, Tamura T, Ozato K, Wolff L . The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 2004; 103: 4142–4149.

    Article  CAS  Google Scholar 

  10. Hara T, Schwieger M, Kazama R, Okamoto S, Minehata K, Ziegler M et al. Acceleration of chronic myeloproliferation by enforced expression of Meis1 or Meis3 in Icsbp-deficient bone marrow cells. Oncogene 2008; 27: 3865–3869.

    Article  CAS  Google Scholar 

  11. Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood 2004; 103: 3480–3489.

    Article  CAS  Google Scholar 

  12. Gurevich RM, Rosten PM, Schwieger M, Stocking C, Humphries RK . Retroviral integration site analysis identifies ICSBP as a collaborating tumor suppressor gene in NUP98-TOP1 -induced leukemia. Exp Hematol 2006; 34: 1192–1201.

    Article  CAS  Google Scholar 

  13. Cummings CT, Deryckere D, Earp HS, Graham DK . Molecular pathways: MERTK signaling in cancer. Clin Cancer Res 2013; 19: 5275.

    Article  CAS  Google Scholar 

  14. Graham DK, Deryckere D, Davies KD, Earp HS . The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14: 769–785.

    Article  CAS  Google Scholar 

  15. Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia (vol 32, pg 5359, 2013). Oncogene 2016; 35: 6270–6270.

    Article  CAS  Google Scholar 

  16. Krause S, Pfeiffer C, Strube S, Alsadeq A, Fedders H, Vokuhl C et al. Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood 2015; 125: 820.

    Article  CAS  Google Scholar 

  17. Minson KA, Smith CC, Deryckere D, Libbrecht C, Lee-Sherick AB, Huey MG et al. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight 2016; 1: e85630.

    Article  Google Scholar 

  18. Liu J, Zhang W, Stashko MA, Deryckere D, Cummings CT, Hunter D et al. UNC1062, a new and potent Mer inhibitor. Eur J Med Chem 2013; 65: 83–93.

    Article  CAS  Google Scholar 

  19. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–890.

    Article  CAS  Google Scholar 

  20. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD . NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 2007; 21: 462–471.

    Article  Google Scholar 

  21. Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 2012; 119: 5621.

    Article  CAS  Google Scholar 

  22. Sun J, Liu W, Li L, Chen J, Wu M, Zhang Y et al. Suppression of Pu.1 function results in expanded myelopoiesis in zebrafish. Leukemia 2013; 27: 1913.

    Article  CAS  Google Scholar 

  23. Kaufman CK, White RM, Zon L . Chemical genetic screening in the zebrafish embryo. Nat Protoc 2009; 4: 1422.

    Article  CAS  Google Scholar 

  24. Xu J, Du L, Wen Z . Myelopoiesis during zebrafish early development. J Genet Genomics 2012; 39: 435–442.

    Article  CAS  Google Scholar 

  25. Shiau CE, Kaufman Z, Meireles AM, Talbot WS . Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. Plos One 2015; 10: e0117513.

    Article  Google Scholar 

  26. Li L, Jin H, Xu J, Shi Y, Wen Z . Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 2011; 117: 1359.

    Article  CAS  Google Scholar 

  27. Li L, Yan B, Shi YQ, Zhang WQ, Wen ZL . Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem 2012; 287: 25353–25360.

    Article  CAS  Google Scholar 

  28. Hall C, Flores MV, Storm T, Crosier K, Crosier P . The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 2007; 7: 42.

    Article  Google Scholar 

  29. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI . Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4: 1238–1246.

    Article  CAS  Google Scholar 

  30. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY . Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 2005; 132: 5199–5209.

    Article  CAS  Google Scholar 

  31. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B . Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011; 29: 699–700.

    Article  Google Scholar 

  32. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 2013; 23: 465.

    Article  CAS  Google Scholar 

  33. Jin H, Sood R, Xu J, Zhen F, English MA, Liu PP et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development 2009; 136: 647.

    Article  CAS  Google Scholar 

  34. Le GD, Redd MJ, Colucciguyon E, Murayama E, Kissa K, Briolat V et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 2008; 111: 132–141.

    Article  Google Scholar 

  35. Link V, Shevchenko A, Heisenberg CP . Proteomics of early zebrafish embryos. BMC Dev Biol 2006; 6: 1–9.

    Article  Google Scholar 

  36. Tamura T, Yanai H, Savitsky D, Taniguchi T . The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26: 535.

    Article  CAS  Google Scholar 

  37. Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 2012; 119: 5239–5249.

    Article  CAS  Google Scholar 

  38. Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S et al. PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables. J Clin Pathol 1992; 45: 416–419.

    Article  CAS  Google Scholar 

  39. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 1997; 106: 348–360.

    Article  CAS  Google Scholar 

  40. Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631–644.

    Article  CAS  Google Scholar 

  41. Mccubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Bäsecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    Article  CAS  Google Scholar 

  42. Ge X, Wang X . Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol 2010; 3: 1–6.

    Article  Google Scholar 

  43. Carrà G, Torti D, Crivellaro S, Panuzzo C, Taulli R, Cilloni D et al. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias. Oncotarget 2016; 7: 66287–66298.

    Article  Google Scholar 

  44. Toofan P, Irvine D, Hopcroft L, Copland M, Wheadon H . The role of the bone morphogenetic proteins in leukaemic stem cell persistence. Biochem Soc Trans 2014; 42: 809–815.

    Article  CAS  Google Scholar 

  45. Morotti A, Panuzzo C, Crivellaro S, Carrà G, Torti D, Guerrasio A et al. The role of PTEN in myeloid malignancies. Hematol Rep 2011; 7: 84–87.

    Google Scholar 

  46. Kuo YH, Jing Q, Cook GJ . Regain control of p53: targeting leukemia stem cells by isoform-specificHDAC inhibition. Exp Hematol 2016; 44: 315–321.

    Article  CAS  Google Scholar 

  47. Le H, Zhang Y, Liu H, Ma L, Jin Y, Huang Q et al. eena promotes myeloid proliferation through stimulating ERK1/2 phosphorylation in zebrafish. J Biol Chem 2008; 283: 17652–17661.

    Article  CAS  Google Scholar 

  48. Karin M . The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270: 16483–16486.

    Article  CAS  Google Scholar 

  49. Camenisch TD, Koller BH, Earp HS, Matsushima GK . A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 1999; 162: 3498–3503.

    CAS  PubMed  Google Scholar 

  50. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 2006; 25: 963–975.

    Article  CAS  Google Scholar 

  51. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT et al. Interplay of Pu.1 and Gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 2005; 8: 97.

    Article  CAS  Google Scholar 

  52. Tamplin O, Durand E, Carr L, Childs S, Hagedorn E, Li P et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 2015; 160: 241.

    Article  CAS  Google Scholar 

  53. Luttun A, Verhamme P . Keeping your vascular integrity: what can we learn from fish? Bioessays 2008; 30: 418–422.

    Article  Google Scholar 

  54. Murray PJ, Wynn TA . Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11: 723.

    Article  CAS  Google Scholar 

  55. Teittinen KJ, Grönroos T, Parikka M, Rämet M, Lohi O . The zebrafish as a tool in leukemia research. Leukemia Res 2012; 36: 1082–1088.

    Article  CAS  Google Scholar 

  56. Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F et al. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med 2011; 208: 1595.

    Article  CAS  Google Scholar 

  57. Keating A, Salzberg D, Sather S, Liang X, Nickoloff S, Anwar A et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 2006; 25: 6092–6100.

    Article  CAS  Google Scholar 

  58. Roser B, Jacques P, Philippe L . ERK1 and ERK2 Map kinases: specific roles or functional redundancy? Front Cell Dev Biol 2016; 4: 53.

    Google Scholar 

  59. Klinakis A, Lobry C, Abdelwahab O, Oh P, Haeno H, Buonamici S et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 2011; 473: 230–233.

    Article  CAS  Google Scholar 

  60. Koenigsmann J, Carstanjen D . Loss of Irf8 does not co-operate with overexpression of BCL-2 in the induction of leukemias in vivo. Leukemia Lymphoma 2009; 50: 2078–2082.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D Wang and Y Liu for technical assistances. This work was supported by the National Natural Science Foundation of China (31301198, 31271568 and 31571500); The National Key Basic Research Program of China (2015CB942802); The Fundamental Research Funds for the Central Universities (XDJK2017A015); The Outstanding Youth Science Foundation of Chongqing (cstc2011jjjq10003).

Author contributions

FZ, YS, YH and L Li designed the experiments. FZ, YS, YH, YZ and LZ performed most experiments. YL and YW provided technical assistance of flow cytometry, L Li wrote the manuscript, HL, L Luo, HH and HR discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Shi, Y., Huang, Y. et al. Irf8 regulates the progression of myeloproliferative neoplasm-like syndrome via Mertk signaling in zebrafish. Leukemia 32, 149–158 (2018). https://doi.org/10.1038/leu.2017.189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.189

This article is cited by

Search

Quick links