Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

Abstract

Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  2. de Boer J, Walf-Vorderwulbecke V, Williams O . In focus: MLL-rearranged leukemia. Leukemia 2013; 27: 1224–1228.

    Article  CAS  Google Scholar 

  3. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  Google Scholar 

  4. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  Google Scholar 

  5. Schoofs T, Berdel WE, Muller-Tidow C . Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 2014; 28: 1–14.

    Article  CAS  Google Scholar 

  6. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223–232.

    Article  CAS  Google Scholar 

  7. Estey EH . Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 2013; 27: 1803–1812.

    Article  CAS  Google Scholar 

  8. Burnett AK, Hills RK, Milligan DW, Goldstone AH, Prentice AG, McMullin MF et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 2010; 28: 586–595.

    Article  CAS  Google Scholar 

  9. Wiseman DH, Greystoke BF, Somervaille TC . The variety of leukemic stem cells in myeloid malignancy. Oncogene 2013; e-pub ahead of print 8 July 2013 doi:10.1038/onc.2013.269.

  10. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

    Article  CAS  Google Scholar 

  11. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21: 473–487.

    Article  CAS  Google Scholar 

  12. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  Google Scholar 

  13. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  Google Scholar 

  14. Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM . The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 2011; 25: 1239–1248.

    Article  CAS  Google Scholar 

  15. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemias in 2013. Leukemia 2013; 27: 2165–2176.

    Article  CAS  Google Scholar 

  16. Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C et al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 2013; 32: 930–938.

    Article  CAS  Google Scholar 

  17. Somervaille TC, Cleary ML . Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006; 10: 257–268.

    Article  CAS  Google Scholar 

  18. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  20. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML . The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123: 207–218.

    Article  CAS  Google Scholar 

  21. Sato T, Russell MA, Denell RE . Homoeosis in Drosophila: a new enhancer of polycomb and related homoeotic mutations. Genetics 1983; 105: 357–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stankunas K, Berger J, Ruse C, Sinclair DA, Randazzo F, Brock HW . The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development 1998; 125: 4055–4066.

    CAS  PubMed  Google Scholar 

  23. Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S et al. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 2003; 17: 1415–1428.

    Article  CAS  Google Scholar 

  24. Doyon Y, Selleck W, Lane WS, Tan S, Cote J . Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 2004; 24: 1884–1896.

    Article  CAS  Google Scholar 

  25. Kim JR, Kee HJ, Kim JY, Joung H, Nam KI, Eom GH et al. Enhancer of polycomb1 acts on serum response factor to regulate skeletal muscle differentiation. J Biol Chem 2009; 284: 16308–16316.

    Article  CAS  Google Scholar 

  26. Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V et al. The p400 complex is an essential E1A transformation target. Cell 2001; 106: 297–307.

    Article  CAS  Google Scholar 

  27. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    Article  CAS  Google Scholar 

  28. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  29. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  Google Scholar 

  30. Sears R, Leone G, DeGregori J, Nevins JR . Ras enhances Myc protein stability. Mol Cell 1999; 3: 169–179.

    Article  CAS  Google Scholar 

  31. Yin X, Giap C, Lazo JS, Prochownik EV . Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22: 6151–6159.

    Article  CAS  Google Scholar 

  32. Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE . A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol 2006; 34: 1480–1489.

    Article  CAS  Google Scholar 

  33. Chittuluru JR, Chaban Y, Monnet-Saksouk J, Carrozza MJ, Sapountzi V, Selleck W et al. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 2011; 18: 1196–1203.

    Article  CAS  Google Scholar 

  34. Sinclair DA, Clegg NJ, Antonchuk J, Milne TA, Stankunas K, Ruse C et al. Enhancer of Polycomb is a suppressor of position-effect variegation in Drosophila melanogaster. Genetics 1998; 148: 211–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Micci F, Panagopoulos I, Bjerkehagen B, Heim S . Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res 2006; 66: 107–112.

    Article  CAS  Google Scholar 

  36. Nakahata S, Saito Y, Hamasaki M, Hidaka T, Arai Y, Taki T et al. Alteration of enhancer of polycomb 1 at 10p11.2 is one of the genetic events leading to development of adult T-cell leukemia/lymphoma. Genes Chromosomes Cancer 2009; 48: 768–776.

    Article  CAS  Google Scholar 

  37. Squatrito M, Gorrini C, Amati B . Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 2006; 16: 433–442.

    Article  CAS  Google Scholar 

  38. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94: 363–374.

    Article  CAS  Google Scholar 

  39. Wood MA, McMahon SB, Cole MD . An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 2000; 5: 321–330.

    Article  CAS  Google Scholar 

  40. Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K, Steensgaard P et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem 2005; 280: 1199–1208.

    Article  CAS  Google Scholar 

  41. Osaki H, Walf-Vorderwulbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G et al. The AAA ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013.

  42. Soucek L, Evan GI . The ups and downs of Myc biology. Curr Opin Genet Dev 2010; 20: 91–95.

    Article  CAS  Google Scholar 

  43. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 2008; 14: 447–457.

    Article  CAS  Google Scholar 

  44. Pelengaris S, Khan M, Evan GI . Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002; 109: 321–334.

    Article  CAS  Google Scholar 

  45. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Article  CAS  Google Scholar 

  46. Thomas LR, Tansey WP . Proteolytic control of the oncoprotein transcription factor Myc. Adv Cancer Res 2011; 110: 77–106.

    Article  CAS  Google Scholar 

  47. Luscher B, Vervoorts J . Regulation of gene transcription by the oncoprotein MYC. Gene 2012; 494: 145–160.

    Article  Google Scholar 

  48. Malempati S, Tibbitts D, Cunningham M, Akkari Y, Olson S, Fan G et al. Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia 2006; 20: 1572–1581.

    Article  CAS  Google Scholar 

  49. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005; 436: 807–811.

    Article  CAS  Google Scholar 

  50. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013; 153: 1552–1566.

    Article  CAS  Google Scholar 

  51. Vervoorts J, Luscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 2003; 4: 484–490.

    Article  CAS  Google Scholar 

  52. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 2005; 25: 10220–10234.

    Article  CAS  Google Scholar 

  53. Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol 2004; 24: 10826–10834.

    Article  CAS  Google Scholar 

  54. Lynch JT, Somerville TD, Spencer GJ, Huang X, Somervaille TC . TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells. Cell Death Dis 2013; 4: e573.

    Article  CAS  Google Scholar 

  55. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39 (Database issue): D945–D950.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jodie Whitaker, Gillian Newton, Morgan Blaylock, Jeff Barry, Michael Hughes, Gail Bruder, Angela Cooke and Deepti Wilks for technical support; William Harris for assistance with plasmid preparations; Chris Womack and staff at the Clinical Pharmacology Unit at Astra Zeneca, Alderley Park, UK for access to normal subjects for BM collection; and Georges Lacaud, Nullin Divecha and Valerie Kouskoff for a critical reading of the manuscript. This work was supported by Cancer Research UK grant number C5759/A12328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C P Somervaille.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Spencer, G., Lynch, J. et al. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 28, 1081–1091 (2014). https://doi.org/10.1038/leu.2013.316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.316

Keywords

This article is cited by

Search

Quick links