Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitivity and Resistance to Therapy

SP/drug efflux functionality of hematopoietic progenitors is controlled by mesenchymal niche through VLA-4/CD44 axis

Abstract

Hematopoiesis is orchestrated by interactions between hematopoietic stem/progenitor cells (HSPCs) and stromal cells within bone marrow (BM) niches. Side population (SP) functionality is a major characteristic of HSPCs related to quiescence and resistance to drugs and environmental stresses. At steady state, SP cells are mainly present in the BM and are mostly absent from the circulation except in stress conditions, raising the hypothesis of the versatility of the SP functionality. However, the mechanism of SP phenotype regulation is unclear. Here we show for the first time that the SP functionality can be induced in lin cells from unmobilized peripheral blood after nesting on mesenchymal stromal cells (MSCs). This MSC-induced SP fraction contains HSPCs as demonstrated by their (i) CD34+ cell percentage, (ii) quiescent status, (iii) in vitro proliferative and clonogenic potential, (iv) engraftment in NSG (NOD SCID gamma chain) mice and (v) stemness gene expression profile. We demonstrate that SP phenotype acquisition/reactivation by circulating lin cells is dependent on interactions with MSCs through VLA-4/α4β1-integrin and CD44. A similar integrin-dependent mechanism of SP phenotype acquisition in acute myeloid leukemia circulating blasts suggests an extrinsic regulation of ATP-binding cassette-transporter activity that could be of importance for a better understanding of adhesion-mediated chemoresistance mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  PubMed  Google Scholar 

  2. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010; 33: 387–399.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  5. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1: 685–697.

    Article  CAS  PubMed  Google Scholar 

  7. Umemoto T, Yamato M, Shiratsuchi Y, Terasawa M, Yang J, Nishida K et al. Expression of integrin beta3 is correlated to the properties of quiescent hemopoietic stem cells possessing the side population phenotype. J Immunol 2006; 177: 7733–7739.

    Article  CAS  PubMed  Google Scholar 

  8. Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y et al. Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood 2012; 119: 83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP . Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002; 99: 12339–12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Challen GA, Little MH . A side order of stem cells: the SP phenotype. Stem Cells 2006; 24: 3–12.

    Article  PubMed  Google Scholar 

  13. Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 2007; 363: 578–583.

    Article  CAS  PubMed  Google Scholar 

  14. Uchida N, Fujisaki T, Eaves AC, Eaves CJ . Transplantable hematopoietic stem cells in human fetal liver have a CD34(+) side population (SP)phenotype. J Clin Invest 2001; 108: 1071–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  16. Guo Y, Follo M, Geiger K, Lubbert M, Engelhardt M . Side-population cells from different precursor compartments. J Hematother Stem Cell Res 2003; 12: 71–82.

    Article  PubMed  Google Scholar 

  17. Preffer FI, Dombkowski D, Sykes M, Scadden D, Yang YG . Lineage-negative side-population (SP) cells with restricted hematopoietic capacity circulate in normal human adult blood: immunophenotypic and functional characterization. Stem Cells 2002; 20: 417–427.

    Article  CAS  PubMed  Google Scholar 

  18. Brunet de la Grange P, Vlaski M, Duchez P, Chevaleyre J, Lapostolle V, Boiron JM et al. Long-term repopulating hematopoietic stem cells and ‘side population’ in human steady state peripheral blood. Stem Cell Res 2013; 11: 625–633.

    Article  CAS  PubMed  Google Scholar 

  19. Storms RW, Goodell MA, Fisher A, Mulligan RC, Smith C . Hoechst dye efflux reveals a novel CD7(+)CD34(−) lymphoid progenitor in human umbilical cord blood. Blood 2000; 96: 2125–2133.

    CAS  PubMed  Google Scholar 

  20. Naylor CS, Jaworska E, Branson K, Embleton MJ, Chopra R . Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant 2005; 35: 353–360.

    Article  CAS  PubMed  Google Scholar 

  21. Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001; 98: 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  22. Moserle L, Ghisi M, Amadori A, Indraccolo S . Side population and cancer stem cells: therapeutic implications. Cancer Lett 2010; 288: 1–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gross E, L'Faqihi-Olive FE, Ysebaert L, Brassac M, Struski S, Kheirallah S et al. B-chronic lymphocytic leukemia chemoresistance involves innate and acquired leukemic side population cells. Leukemia 2010; 24: 1885–1892.

    Article  CAS  PubMed  Google Scholar 

  24. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  PubMed  Google Scholar 

  25. Becker PS . Dependence of acute myeloid leukemia on adhesion within the bone marrow microenvironment. Scientific World J 2012; 2012: 856467.

    Article  Google Scholar 

  26. Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H et al. Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia 2008; 22: 353–360.

    Article  CAS  PubMed  Google Scholar 

  27. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  28. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  29. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  PubMed  Google Scholar 

  30. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS . The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 2008; 22: 941–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002; 99: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  32. Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 2005; 205: 228–236.

    Article  CAS  PubMed  Google Scholar 

  33. Hurley RW, McCarthy JB, Verfaillie CM . Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 1995; 96: 511–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP . Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 2011; 8: 136–147.

    Article  CAS  PubMed  Google Scholar 

  35. Pierre-Louis O, Clay D, Brunet de la Grange P, Blazsek I, Desterke C, Guerton B et al. Dual SP/ALDH functionalities refine the human hematopoietic Lin−CD34+CD38− stem/progenitor cell compartment. Stem Cells 2009; 27: 2552–2562.

    Article  CAS  PubMed  Google Scholar 

  36. Mo W, Zhang JT . Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012; 3: 1–27.

    CAS  PubMed  Google Scholar 

  37. Stam RW, van den Heuvel-Eibrink MM, den Boer ML, Ebus ME, Janka-Schaub GE, Allen JD et al. Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein. Leukemia 2004; 18: 78–83.

    Article  CAS  PubMed  Google Scholar 

  38. Shapiro HM . Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry 1981; 2: 143–150.

    Article  CAS  PubMed  Google Scholar 

  39. Winkler IG, Pettit AR, Raggatt LJ, Jacobsen RN, Forristal CE, Barbier V et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 2012; 26: 1594–1601.

    Article  CAS  PubMed  Google Scholar 

  40. Wardyn GG, Rennard SI, Brusnahan SK, McGuire TR, Carlson ML, Smith LM et al. Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Exp Hematol 2008; 36: 216–223.

    Article  CAS  PubMed  Google Scholar 

  41. Brusnahan SK, McGuire TR, Jackson JD, Lane JT, Garvin KL, O'Kane BJ et al. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines. Mech Ageing Dev 2010; 131: 718–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS . The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 1995; 92: 9647–9651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  44. Jetmore A, Plett PA, Tong X, Wolber FM, Breese R, Abonour R et al. Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34(+) cells transplanted into conditioned NOD/SCID recipients. Blood 2002; 99: 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  45. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells—modeling the niche compartments in vitro. Haematologica 2010; 95: 542–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teixido J, Hemler ME, Greenberger JS, Anklesaria P . Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 1992; 90: 358–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verfaillie CM, Benis A, Iida J, McGlave PB, McCarthy JB . Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 1994; 84: 1802–1811.

    CAS  PubMed  Google Scholar 

  49. Lundell BI, McCarthy JB, Kovach NL, Verfaillie CM . Activation of beta1 integrins on CML progenitors reveals cooperation between beta1 integrins and CD44 in the regulation of adhesion and proliferation. Leukemia 1997; 11: 822–829.

    Article  CAS  PubMed  Google Scholar 

  50. Thankamony SP, Sackstein R . Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci USA 2011; 108: 2258–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harburger DS, Calderwood DA . Integrin signalling at a glance. J Cell Sci 2009; 122 (Part 2): 159–163.

    Article  CAS  PubMed  Google Scholar 

  52. Toole BP, Hyaluronan Slomiany MG . CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008; 11: 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deguchi T, Komada Y, Sugiyama K, Zhang XL, Azuma E, Yamamoto H et al. Expression of homing-associated cell adhesion molecule (H-CAM/CD44) on human CD34+ hematopoietic progenitor cells. Exp Hematol 1999; 27: 542–552.

    Article  CAS  PubMed  Google Scholar 

  54. Challen GA, Boles NC, Chambers SM, Goodell MA . Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6: 265–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A et al. CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 1999; 27: 978–993.

    Article  CAS  PubMed  Google Scholar 

  56. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A . BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 2002; 16: 1443–1447.

    Article  CAS  PubMed  Google Scholar 

  57. Marie JP, Faussat-Suberville AM, Zhou D, Zittoun R . Daunorubicin uptake by leukemic cells: correlations with treatment outcome and mdr1 expression. Leukemia 1993; 7: 825–831.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Massard (Jean Julliard Army Blood Transfusion Center, Clamart, France) and to Dr Konopacki (Service of Hematology, HIA Percy, Clamart, France) for supplying blood and BM samples from healthy donors and AML patients. This work was supported by grants from LNCC (Ligue Nationale Contre le Cancer; No. EL2010.LNCC/MCLBK), Vaincre le Cancer-NRB (Nouvelles Recherches Biomédicales) association, DGA (Délégation Générale pour l’Armement) and Laurette Fugain association (ALF 2013/08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-J Lataillade or M-C Le Bousse-Kerdilès.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malfuson, JV., Boutin, L., Clay, D. et al. SP/drug efflux functionality of hematopoietic progenitors is controlled by mesenchymal niche through VLA-4/CD44 axis. Leukemia 28, 853–864 (2014). https://doi.org/10.1038/leu.2013.256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.256

Keywords

This article is cited by

Search

Quick links