Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Absence of IL-12Rβ2 in CD33+CD38+ pediatric acute myeloid leukemia cells favours progression in NOD/SCID/IL2RγC-deficient mice

Abstract

Childhood acute myeloid leukemia (AML) is a hematological malignancy in which tumor burden is continuously replenished by leukemic-initiating cells (ICs), which proliferate slowly and are refractory to chemotherapeutic agents. We investigated whether interleukin (IL)-12, an immuno-modulatory cytokine with anti-tumor activity, may target AML blasts (CD45+CD33+) and populations known to contain leukemia ICs (that is, CD34+CD38, CD33+CD38+ and CD44+CD38 cells). We demonstrate for the first time that: i) AML blasts and their CD34+CD38, CD33+CD38+, CD44+CD38 subsets express the heterodimeric IL-12 receptor (IL-12R), ii) AML cells injected subcutaneously into NOD/SCID/Il2rg−/− (NSG) mice developed a localized tumor mass containing leukemic ICs and blasts that were virtually eliminated by IL-12 treatment, iii) AML cells injected intravenously into NSG mice engrafted within the first month in the spleen, but not in bone marrow or peripheral blood. At this time, IL-12 dramatically dampened AML CD45+CD33+, CD34+CD38, CD33+CD38+ and CD44+CD38 populations, only sparing residual CD33+CD38+ cells that did not express IL-12Rβ2. From 30 to 60 days after the initial inoculum, these IL-12-unresponsive cells expanded and metastasized in both control and IL-12-treated NSG mice. Our data indicate that the absence of IL-12Rβ2 in pediatric AML cells favours leukemia progression in NOD/SCID/IL2Rγc-deficient mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Stone RM, O'Donnell MR, Sekeres MA . Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2004; 1: 98–117.

    Article  Google Scholar 

  2. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    CAS  Google Scholar 

  3. Kaspers GJ, Zwaan CM . Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007; 92: 1519–1532.

    Article  Google Scholar 

  4. Shah M, Agarwal B . Recent advances in management of acute myeloid leukemia (AML). Indian J Pediatr 2008; 75: 831–837.

    Article  Google Scholar 

  5. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  6. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  Google Scholar 

  7. Dick JE . Acute myeloid leukemia stem cells. Ann NY Acad Sci 2005; 1044: 1–5.

    Article  Google Scholar 

  8. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  Google Scholar 

  9. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  Google Scholar 

  10. Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.

    Article  CAS  Google Scholar 

  11. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB . Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009; 8: 806–823.

    Article  CAS  Google Scholar 

  12. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  Google Scholar 

  13. Mansson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 2007; 26: 407–419.

    Article  Google Scholar 

  14. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  Google Scholar 

  15. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  Google Scholar 

  16. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009; 5: 31–42.

    Article  CAS  Google Scholar 

  17. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    Article  CAS  Google Scholar 

  18. Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 1996; 93: 14002–14007.

    Article  CAS  Google Scholar 

  19. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  Google Scholar 

  20. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991; 146: 3074–3081.

    CAS  PubMed  Google Scholar 

  21. Airoldi I, Cocco C, Giuliani N, Ferrarini M, Colla S, Ognio E et al. Constitutive expression of IL-12R beta 2 on human multiple myeloma cells delineates a novel therapeutic target. Blood 2008; 112: 750–759.

    Article  CAS  Google Scholar 

  22. Airoldi I, Di Carlo E, Cocco C, Caci E, Cilli M, Sorrentino C et al. IL-12 can target human lung adenocarcinoma cells and normal bronchial epithelial cells surrounding tumor lesions. PLoS One 2009; 4: e6119.

    Article  Google Scholar 

  23. Airoldi I, Di Carlo E, Cocco C, Taverniti G, D′Antuono T, Ognio E et al. Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc Natl Acad Sci USA 2007; 104: 3996–4001.

    Article  CAS  Google Scholar 

  24. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  CAS  Google Scholar 

  25. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H et al. WHO Classification of Tumors. IARC: Lyon, 2008.

    Google Scholar 

  26. Montagna D, Locatelli F, Moretta A, Lisini D, Previdere C, Grignani P et al. T lymphocytes of recipient origin may contribute to the recovery of specific immune response toward viruses and fungi in children undergoing cord blood transplantation. Blood 2004; 103: 4322–4329.

    Article  CAS  Google Scholar 

  27. Allen RC, Graves G, Budowle B . Polymerase chain reaction amplification products separated on rehydratable polyacrylamide gels and stained with silver. Biotechniques 1989; 7: 736–744.

    CAS  PubMed  Google Scholar 

  28. Airoldi I, Di Carlo E, Banelli B, Moserle L, Cocco C, Pezzolo A et al. The IL-12Rbeta2 gene functions as a tumor suppressor in human B cell malignancies. J Clin Invest 2004; 113: 1651–1659.

    Article  CAS  Google Scholar 

  29. Airoldi I, Di Carlo E, Cocco C, Sorrentino C, Fais F, Cilli M et al. Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood 2005; 106: 3846–3853.

    Article  CAS  Google Scholar 

  30. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 2008; 123: 2222–2227.

    Article  CAS  Google Scholar 

  31. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.

    Article  CAS  Google Scholar 

  32. Akashi K, Harada M, Shibuya T, Eto T, Takamatsu Y, Teshima T et al. Effects of interleukin-4 and interleukin-6 on the proliferation of CD34+ and CD34- blasts from acute myelogenous leukemia. Blood 1991; 78: 197–204.

    CAS  PubMed  Google Scholar 

  33. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    Article  CAS  Google Scholar 

  34. Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV . Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol 2008; 18: 260–267.

    Article  CAS  Google Scholar 

  35. Quere R, Andradottir S, Brun AC, Zubarev RA, Karlsson G, Olsson K et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia 2011; 25: 515–526.

    Article  CAS  Google Scholar 

  36. Morisot S, Wayne AS, Bohana-Kashtan O, Kaplan IM, Gocke CD, Hildreth R et al. High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias. Leukemia 2010; 24: 1859–1866.

    Article  CAS  Google Scholar 

  37. Hauswirth AW, Florian S, Printz D, Sotlar K, Krauth MT, Fritsch G et al. Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells. Eur J Clin Invest 2007; 37: 73–82.

    Article  CAS  Google Scholar 

  38. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  Google Scholar 

  39. Roodman GD . Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res 2002; 17: 1921–1925.

    Article  CAS  Google Scholar 

  40. Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008; 13: 331–342.

    Article  CAS  Google Scholar 

  41. Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 2010; 188: 115–130.

    Article  CAS  Google Scholar 

  42. Bellone G, Trinchieri G . Dual stimulatory and inhibitory effect of NK cell stimulatory factor/IL-12 on human hematopoiesis. J Immunol 1994; 153: 930–937.

    CAS  PubMed  Google Scholar 

  43. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y . IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol 2007; 35: 203–213.

    Article  CAS  Google Scholar 

  44. Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, Clancy M et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res 2000; 6: 1678–1692.

    CAS  PubMed  Google Scholar 

  45. Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 2002; 20: 264–269.

    Article  CAS  Google Scholar 

  46. Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E et al. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res 2000; 60: 3559–3568.

    CAS  PubMed  Google Scholar 

  47. Triozzi PL, Allen KO, Carlisle RR, Craig M, LoBuglio AF, Conry RM . Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 2005; 11: 4168–4175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Associazione Italiana Ricerca sul Cancro (AIRC) Milano, Italy (Grant number 4014 to IA), the Italian Ministry of Health (RF, RC, 5/1000, Progetto Strategico Oncologico 2006 rif070701) and the Fondazione Cassa di Risparmio della Provincia di Chieti (CariChieti), Italy to EDC; by grants from AIRC to VP; by the special grant 5 per mille from AIRC to FL; and grant from the Fondazione IRCCS Policlinico San Matteo Pavia Ricerca Corrente to DM. Wyeth, Cambridge, MA is acknowledged for the kindly gift of human recombinant IL-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Airoldi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferretti, E., Montagna, D., Di Carlo, E. et al. Absence of IL-12Rβ2 in CD33+CD38+ pediatric acute myeloid leukemia cells favours progression in NOD/SCID/IL2RγC-deficient mice. Leukemia 26, 225–235 (2012). https://doi.org/10.1038/leu.2011.213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.213

Keywords

Search

Quick links