Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Plasmin inhibitor reduces T-cell lymphoid tumor growth by suppressing matrix metalloproteinase-9-dependent CD11b+/F4/80+ myeloid cell recruitment

Abstract

Activation of the fibrinolytic system during lymphoma progression is a well-documented clinical phenomenon. But the mechanism by which the fibrinolytic system can modulate lymphoma progression has been elusive. The main fibrinolytic enzyme, plasminogen (Plg)/plasmin (Plm), can activate matrix metalloproteinases (MMPs), such as MMP-9, which has been linked to various malignancies. Here we provide the evidence that blockade of Plg reduces T-cell lymphoma growth by inhibiting MMP-9-dependent recruitment of CD11b+F4/80+ myeloid cells locally within the lymphoma tissue. Genetic Plg deficiency and drug-mediated Plm blockade delayed T-cell lymphoma growth and diminished MMP-9-dependent CD11b+F4/80+ myeloid cell infiltration into lymphoma tissues. A neutralizing antibody against CD11b inhibited T-cell lymphoma growth in vivo, which indicates that CD11b+ myeloid cells have a role in T-cell lymphoma growth. Plg deficiency in T-cell lymphoma-bearing mice resulted in reduced plasma levels of the growth factors vascular endothelial growth-A and Kit ligand, both of which are known to enhance myeloid cell proliferation. Collectively, the data presented in this study demonstrate a previously undescribed role of Plm in lymphoproliferative disorders and provide strong evidence that specific blockade of Plg represents a promising approach for the regulation of T-cell lymphoma growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Huber K, Kirchheimer JC, Sedlmayer A, Bell C, Ermler D, Binder BR . Clinical value of determination of urokinase-type plasminogen activator antigen in plasma for detection of colorectal cancer: comparison with circulating tumor-associated antigens CA 19-9 and carcinoembryonic antigen. Cancer Res 1993; 53: 1788–1793.

    CAS  Google Scholar 

  2. Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M et al. Plasminogen activation and cancer. Thromb Haemost 2005; 93: 676–681.

    Article  CAS  Google Scholar 

  3. Thomas GT, Lewis MP, Speight PM . Matrix metalloproteinases and oral cancer. Oral Oncol 1999; 35: 227–233.

    Article  CAS  Google Scholar 

  4. Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, Romer J et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell 2007; 1: 658–670.

    Article  CAS  Google Scholar 

  5. Hazar B, Polat G, Seyrek E, Bagdatoglglu O, Kanik A, Tiftik N . Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in Hodgkin's and non-Hodgkin's lymphoma. Int J Clin Pract 2004; 58: 139–143.

    Article  CAS  Google Scholar 

  6. Johansson M, Denardo DG, Coussens LM . Polarized immune responses differentially regulate cancer development. Immunol Rev 2008; 222: 145–154.

    Article  CAS  Google Scholar 

  7. Ruan J, Hajjar K, Rafii S, Leonard JP . Angiogenesis and antiangiogenic therapy in non-Hodgkin′s lymphoma. Ann Oncol 2009; 20: 413–424.

    Article  CAS  Google Scholar 

  8. Van Lint P, Libert C . Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82: 1375–1381.

    Article  CAS  Google Scholar 

  9. Coussens LM, Tinkle CL, Hanahan D, Werb Z . MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103: 481–490.

    Article  CAS  Google Scholar 

  10. Okada Y, Tsuda Y, Wanaka K, Tada M, Okamoto U, Okamoto S et al. Development of plasmin and plasma kallikrein selective inhibitors and their effect on M1 (melanoma) and HT29 cell lines. Bioorg Med Chem Lett 2000; 10: 2217–2221.

    Article  CAS  Google Scholar 

  11. Bugge TH, Flick MJ, Daugherty CC, Degen JL . Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9: 794–807.

    Article  CAS  Google Scholar 

  12. Nakayama E, Uenaka A, Stockert E, Obata Y . Detection of a unique antigen on radiation leukemia virus-induced leukemia B6RV2. Cancer Res 1984; 44: 5138–5144.

    CAS  Google Scholar 

  13. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006; 12: 557–567.

    Article  CAS  Google Scholar 

  14. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007; 25: 911–920.

    Article  CAS  Google Scholar 

  15. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006; 66: 11238–11246.

    Article  CAS  Google Scholar 

  16. Longstaff C . Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagul Fibrinolysis 1994; 5: 537–542.

    CAS  Google Scholar 

  17. Zhao WL, Mourah S, Mounier N, Leboeuf C, Daneshpouy ME, Legres L et al. Vascular endothelial growth factor-A is expressed both on lymphoma cells and endothelial cells in angioimmunoblastic T-cell lymphoma and related to lymphoma progression. Lab Invest 2004; 84: 1512–1519.

    Article  CAS  Google Scholar 

  18. Kadin ME, Cavaille-Coll MW, Gertz R, Massague J, Cheifetz S, George D . Loss of receptors for transforming growth factor beta in human T-cell malignancies. Proc Natl Acad Sci USA 1994; 91: 6002–6006.

    Article  CAS  Google Scholar 

  19. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z . Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003; 10: 136–141.

    Article  CAS  Google Scholar 

  20. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  CAS  Google Scholar 

  21. Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 2005; 202: 739–750.

    Article  CAS  Google Scholar 

  22. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  Google Scholar 

  23. Doussis-Anagnostopoulou IA, Talks KL, Turley H, Debnam P, Tan DC, Mariatos G et al. Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin-Reed-Sternberg cells in Hodgkin's disease. J Pathol 2002; 197: 677–683.

    Article  CAS  Google Scholar 

  24. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B . Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002; 2: 826–835.

    Article  CAS  Google Scholar 

  25. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  Google Scholar 

  26. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  Google Scholar 

  27. Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 1992; 267: 21712–21719.

    CAS  Google Scholar 

  28. Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H . Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 1990; 29: 10261–10270.

    Article  CAS  Google Scholar 

  29. Lyons RM, Keski-Oja J, Moses HL . Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988; 106: 1659–1665.

    Article  CAS  Google Scholar 

  30. Roy JS, Van Themsche C, Demers M, Opdenakker G, Arnold B, St-Pierre Y . Triggering of T-cell leukemia and dissemination of T-cell lymphoma in MMP-9-deficient mice. Leukemia 2007; 21: 2506–2511.

    Article  CAS  Google Scholar 

  31. Palumbo JS, Talmage KE, Liu H, La Jeunesse CM, Witte DP, Degen JL . Plasminogen supports tumor growth through a fibrinogen-dependent mechanism linked to vascular patency. Blood 2003; 102: 2819–2827.

    Article  CAS  Google Scholar 

  32. de Jong D, Enblad G . Inflammatory cells and immune microenvironment in malignant lymphoma. J Intern Med 2008; 264: 528–536.

    Article  CAS  Google Scholar 

  33. Moons L, Shi C, Ploplis V, Plow E, Haber E, Collen D et al. Reduced transplant arteriosclerosis in plasminogen-deficient mice. J Clin Invest 1998; 102: 1788–1797.

    Article  CAS  Google Scholar 

  34. Lukacs N, Strieter R, Lincoln P, Brownell E, Pullen D, Schock H et al. Stem cell factor (c-kit ligand) influences eosinophil recruitment and histamine levels in allergic airway inflammation. J Immunol 1996; 156: 3945–3951.

    CAS  Google Scholar 

  35. Ferland C, Guilbert M, Davoine F, Flamand N, Chakir J, Laviolette M . Eotaxin promotes eosinophil transmigration via the activation of the plasminogen-plasmin system. J Leukoc Biol 2001; 69: 772–778.

    CAS  Google Scholar 

  36. Martinelli-Klay CP, Mendis BR, Lombardi T . Eosinophils and oral squamous cell carcinoma: a short review. J Oncol 2009; 2009: 310132.

    Article  CAS  Google Scholar 

  37. Reimann M, Lee S, Loddenkemper C, Dorr JR, Tabor V, Aichele P et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 2010; 17: 262–272.

    Article  CAS  Google Scholar 

  38. Lin EY, Nguyen AV, Russell RG, Pollard JW . Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193: 727–740.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephanie C Napier, H Tachikawa, and A Furuhata (Juntendo University) and the FACS core facility for their help. Human recombinant tissue-type Plg activator was provided by the Eisai corporation (Japan). This work was supported by the Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (KH; BH); grants from the Ministry of Health, Labour and Welfare (KH), Mitsubishi Pharma Research Foundation (KH), Kyowa Hakko Kirin Co., Ltd (KH), Japan Leukaemia Research Fund (KH), Novartis Foundation (BH) and Sagawa Foundation (BH); Program for Improvement of the Research Environment for Young Researchers (BH) funded by the Special Coordination Funds for Promoting Science and Technology of the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Hattori.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, M., Nishida, C., Tashiro, Y. et al. Plasmin inhibitor reduces T-cell lymphoid tumor growth by suppressing matrix metalloproteinase-9-dependent CD11b+/F4/80+ myeloid cell recruitment. Leukemia 26, 332–339 (2012). https://doi.org/10.1038/leu.2011.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.203

Keywords

This article is cited by

Search

Quick links