Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of BMI-1 and immune responses to BMI-1 protein

Abstract

BMI-1 and EZH2 are polycomb group (PcG) proteins that maintain self-renewal of stem cells, and are overexpressed in leukemia. To investigate the potential of PcG proteins as leukemia-associated antigens, and as targets for graft-versus-leukemia (GVL) effects, we studied cells obtained from 86 patients with chronic myeloid leukemia (CML) and 25 human leukocyte antigen (HLA)-A*0201+ sibling donors collected before allogeneic stem cell transplantation (SCT). Although BMI-1 overexpression in CD34+ cells of CML patients treated with pharmacotherapy is associated with poor prognosis, we found, conversely, that in CML patients treated with SCT, a higher expression of BMI-1, and correspondingly a lower expression of its target for repression, CDKN2A, is associated with improved leukemia-free survival. Cytotoxic T-lymphocyte (CTL) responses to the BMI-1 peptide were detected in 5 of 25 (20%) donors, and in 8 of 19 (42%) HLA-A*0201+ CML patients. BMI-1 generated more total and high-avidity immune responses, and was more immunogenic than EZH2. PcG-specific CTLs had a memory phenotype, were readily expanded in short-term cultures and were detected after SCT in recipients of PcG-specific CTL-positive donors. A higher BMI-1 expression in CML CD34+ progenitors was associated with native BMI-1 immune responses. These immune responses to PcG proteins may target leukemia stem cells and have relevance for disease control by GVL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sparmann A, van LM . Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6: 846–856.

    Article  CAS  PubMed  Google Scholar 

  2. Pietersen AM, van LM . Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol 2008; 20: 201–207.

    Article  CAS  PubMed  Google Scholar 

  3. Rajasekhar VK, Begemann M . Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 2007; 25: 2498–2510.

    Article  CAS  PubMed  Google Scholar 

  4. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. BMI-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  PubMed  Google Scholar 

  5. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product BMI-1. Immunity 2004; 21: 843–851.

    Article  CAS  PubMed  Google Scholar 

  6. Lessard J, Sauvageau G . BMI-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  7. Rizo A, Dontje B, Vellenga E, de Haan G, Schuringa JJ . Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 2008; 111: 2621–2630.

    Article  CAS  PubMed  Google Scholar 

  8. Rizo A, Olthof S, Han L, Vellenga E, de Haan HG, Schuringa JJ . Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood 2009; 114: 1498–1505.

    Article  CAS  PubMed  Google Scholar 

  9. Rizo A, Horton SJ, Olthof S, Dontje B, Ausema A, van Os R et al. BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116: 4621–4630.

    Article  CAS  PubMed  Google Scholar 

  10. Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV . The polycomb group BMI-1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 2007; 110: 380–383.

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharyya J, Mihara K, Yasunaga S, Tanaka H, Hoshi M, Takihara Y et al. BMI-1 expression is enhanced through transcriptional and posttranscriptional regulation during the progression of chronic myeloid leukemia. Ann Hematol 2009; 88: 333–340.

    Article  CAS  PubMed  Google Scholar 

  12. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A . Expression of polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 2007; 21: 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  14. Mihara K, Chowdhury M, Nakaju N, Hidani S, Ihara A, Hyodo H et al. BMI-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 2006; 107: 305–308.

    Article  CAS  PubMed  Google Scholar 

  15. Mohty M, Szydlo RM, Yong AS, Apperley JF, Goldman JM, Melo JV . Association between BMI-1 expression, acute graft-versus-host disease, and outcome following allogeneic stem cell transplantation from HLA-identical siblings in chronic myeloid leukemia. Blood 2008; 112: 2163–2166.

    Article  CAS  PubMed  Google Scholar 

  16. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 107: 2170–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steele JC, Torr EE, Noakes KL, Kalk E, Moss PA, Reynolds GM et al. The polycomb group proteins, BMI-1 and EZH2, are tumour-associated antigens. Br J Cancer 2006; 95: 1202–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujii N, Turtle CJ, Campregher PV, Warren EH . Generation of CD8+ cytotoxic T cell clones recognizing BMI1-derived peptides. Blood 2008; 112, Abstract 2909.

  19. Speck B, Bortin MM, Champlin R, Goldman JM, Herzig RH, McGlave PB et al. Allogeneic bone-marrow transplantation for chronic myelogenous leukaemia. Lancet 1984; 1: 665–668.

    Article  CAS  PubMed  Google Scholar 

  20. Yong AS, Rezvani K, Savani BN, Eniafe R, Mielke S, Goldman JM et al. High PR3 or ELA2 expression by CD34+ cells in advanced phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide driven graft-versus-leukemia effects. Blood 2007; 110: 770–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Savani BN, Rezvani K, Mielke S, Montero A, Kurlander R, Carter CS et al. Factors associated with early molecular remission after T cell-depleted allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood 2006; 107: 1688–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sloand E, Childs RW, Solomon S, Greene A, Young NS, Barrett AJ . The graft-versus-leukemia effect of nonmyeloablative stem cell allografts may not be sufficient to cure chronic myelogenous leukemia. Bone Marrow Transplant 2003; 32: 897–901.

    Article  CAS  PubMed  Google Scholar 

  23. Craddock C, Szydlo RM, Klein JP, Dazzi F, Olavarria E, van Rhee F et al. Estimating leukemia-free survival after allografting for chronic myeloid leukemia: a new method that takes into account patients who relapse and are restored to complete remission. Blood 2000; 96: 86–90.

    CAS  PubMed  Google Scholar 

  24. Gratwohl A, Hermans J, Apperley J, Arcese W, Bacigalupo A, Bandini G et al. Acute graft-versus-host disease: grade and outcome in patients with chronic myelogenous leukemia. Blood 1995; 86: 813–818.

    CAS  PubMed  Google Scholar 

  25. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991; 28: 250–259.

    CAS  PubMed  Google Scholar 

  26. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV . Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood 2006; 107: 205–212.

    Article  CAS  PubMed  Google Scholar 

  28. Rezvani K, Yong AS, Tawab A, Jafarpour B, Eniafe R, Mielke S et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113: 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weber G, Karbach J, Kuci S, Kreyenberg H, Willasch A, Koscielniak E et al. WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation. Leukemia 2009; 23: 1634–1642.

    Article  CAS  PubMed  Google Scholar 

  30. Montero A, Savani BN, Shenoy A, Read EJ, Carter CS, Leitman SF et al. T cell depleted peripheral blood stem cell allotransplantation with T cell add back for patients with hematological malignancies: effect of chronic GVHD on outcome. Biol Blood Marrow Transplant 2006; 12: 1318–1325.

    Article  PubMed  Google Scholar 

  31. Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003; 111: 639–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gratwohl A, Heim D . Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract Res Clin Haematol 2009; 22: 431–443.

    Article  PubMed  Google Scholar 

  33. Marin D, Milojkovic D, Olavarria E, Khorashad JS, de Lavallade H, Reid AG et al. European LeukemiaNet criteria for failure or sub-optimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood 2008; 112: 4437–4444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    Article  CAS  PubMed  Google Scholar 

  35. Konig H, Holtz M, Modi H, Manley P, Holyoake TL, Forman SJ et al. Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 2008; 22: 748–755.

    Article  CAS  PubMed  Google Scholar 

  36. Gannage M, Abel M, Michallet AS, Delluc S, Lambert M, Giraudier S et al. Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J Immunol 2005; 174: 8210–8218.

    Article  CAS  PubMed  Google Scholar 

  37. Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick E, Sewell AK et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms' tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 2005; 11 (24 Part 1): 8799–8807.

    Article  CAS  PubMed  Google Scholar 

  38. Majewski IJ, Ritchie ME, Phipson B, Corbin J, Pakusch M, Ebert A et al. Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 2010; 116: 731–739.

    Article  CAS  PubMed  Google Scholar 

  39. de Lavallade H, Finetti P, Carbuccia N, Khorashad JS, Charbonnier A, Foroni L et al. A gene expression signature of primary resistance to imatinib in chronic myeloid leukemia. Leuk Res 2010; 34: 254–257.

    Article  CAS  PubMed  Google Scholar 

  40. Schmitz JE, Forman MA, Lifton MA, Concepcion O, Reimann Jr KA, Crumpacker CS et al. Expression of the CD8alpha beta-heterodimer on CD8(+) T lymphocytes in peripheral blood lymphocytes of human immunodeficiency virus− and human immunodeficiency virus+ individuals. Blood 1998; 92: 198–206.

    CAS  PubMed  Google Scholar 

  41. Park JH, Adoro S, Lucas PJ, Sarafova SD, Alag AS, Doan LL et al. ‘Coreceptor tuning’: cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 2007; 8: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  42. Kapp M, Stevanovic S, Fick K, Tan SM, Loeffler J, Opitz A et al. CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transplant 2009; 43: 399–410.

    Article  CAS  PubMed  Google Scholar 

  43. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 2010; 115: 3869–3878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health, at the NHLBI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S M Yong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, A., Stephens, N., Weber, G. et al. Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of BMI-1 and immune responses to BMI-1 protein. Leukemia 25, 629–637 (2011). https://doi.org/10.1038/leu.2010.325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.325

Keywords

This article is cited by

Search

Quick links