Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells

Abstract

The HOX genes encode a family of transcription factors that are dysregulated in several malignancies and have been implicated in oncogenesis and cancer cell survival. Disruption of HOX protein function using the peptide HXR9 has shown anti-tumor effects against melanoma, lung cancer and renal cancer. In this report, we evaluated the expression of all 39 HOX genes in a panel of six malignant B-cell lines, including multiple myeloma cells and found different levels of expression of HOX family members suggesting that they also have a role in malignant B-cell survival. We show that disrupting HOX function using the peptide HXR9 induces significant cytotoxicity in the entire panel of cell lines. Importantly, we found that the cytotoxic effects of HXR9 can be enhanced by combining it with ch128.1Av, an antibody-avidin fusion protein specific for the human transferrin receptor 1 (CD71). Iron starvation induced by the fusion protein contributes to the enhanced effect and involves, at least in part, the induction of a caspase-independent pathway. These results show the relevance of HOX proteins in malignant B-cell survival and suggest that our therapeutic strategy may be effective in the treatment of incurable B-cell malignancies such as multiple myeloma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma 2009; 9: 278–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Siegel R, Ward Y, Hao JX, Thun MJ . Cancer Statistics. CA Cancer J Clin 2009; 59: 225–249.

    Article  PubMed  Google Scholar 

  3. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palumbo A, Rajkumar SV . Treatment of newly diagnosed myeloma. Leukemia 2009; 23: 449–456.

    Article  CAS  PubMed  Google Scholar 

  5. Veraksa A, Del Campo M, McGinnis W . Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab 2000; 69: 85–100.

    Article  CAS  PubMed  Google Scholar 

  6. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR . The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205: 154–171.

    Article  CAS  PubMed  Google Scholar 

  7. Argiropoulos B, Humphries RK . Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26: 6766–6776.

    Article  CAS  PubMed  Google Scholar 

  8. Sitwala KV, Dandekar MN, Hess JL . HOX Proteins and Leukemia. Int J Clin Exp Pathol 2008; 1: 461–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Abramovich C, Pineault N, Ohta H, Humphries RK . Hox genes: from leukemia to hematopoietic stem cell expansion. Ann N Y Acad Sci 2005; 1044: 109–116.

    Article  CAS  PubMed  Google Scholar 

  10. Bijl JJ, van Oostveen JW, Walboomers JM, Horstman A, van den Brule AJ, Willemze R et al. HOXC4, HOXC5, and HOXC6 expression in non-Hodgkin′s lymphoma: preferential expression of the HOXC5 gene in primary cutaneous anaplastic T-cell and oro-gastrointestinal tract mucosa-associated B-cell lymphomas. Blood 1997; 90: 4116–4125.

    CAS  PubMed  Google Scholar 

  11. Hudlebusch HR, Lodahl M, Johnsen HE, Rasmussen T . Expression of HOXA genes in patients with multiple myeloma. Leuk Lymphoma 2004; 45: 1215–1217.

    Article  CAS  PubMed  Google Scholar 

  12. Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R, Pandha HS . Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res 2007; 67: 5806–5813.

    Article  CAS  PubMed  Google Scholar 

  13. Chang CP, Shen WF, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML . Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev 1995; 9: 663–674.

    Article  CAS  PubMed  Google Scholar 

  14. Plowright L, Harrington KJ, Pandha HS, Morgan R . HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer 2009; 100: 470–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shears L, Plowright L, Harrington K, Pandha HS, Morgan R . Disrupting the interaction between HOX and PBX causes necrotic and apoptotic cell death in the renal cancer lines CaKi-2 and 769-P. J Urol 2008; 180: 2196–2201.

    Article  PubMed  Google Scholar 

  16. Ng PP, Dela Cruz JS, Sorour DN, Stinebaugh JM, Shin SU, Shin DS et al. An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells. Proc Natl Acad Sci USA 2002; 99: 10706–10711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng PP, Helguera G, Daniels TR, Lomas SZ, Rodriguez JA, Schiller G et al. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor. Blood 2006; 108: 2745–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez JA, Helguera G, Daniels TR, Neacato II, Lopez-Valdes HE, Charles AC et al. Binding specificity and internalization properties of an antibody-avidin fusion protein targeting the human transferrin receptor. J Control Release 2007; 124: 35–42.

    Article  CAS  PubMed  Google Scholar 

  19. Ortiz-Sanchez E, Daniels TR, Helguera G, Martinez-Maza O, Bonavida B, Penichet ML . Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: functional relevance of iron, the receptor, and reactive oxygen species. Leukemia 2009; 23: 59–70.

    Article  CAS  PubMed  Google Scholar 

  20. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML . The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006; 121: 144–158.

    Article  CAS  PubMed  Google Scholar 

  21. Daniels TR, Delgado T, Helguera G, Penichet ML . The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006; 121: 159–176.

    Article  CAS  PubMed  Google Scholar 

  22. Daniels TR, Ng PP, Delgado T, Lynch MR, Schiller G, Helguera G et al. Conjugation of an anti-transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells. Mol Cancer Ther 2007; 6: 2995–3008.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki E, Daniels TR, Helguera G, Penichet ML, Kazuo U, Bonavida B . Inhibition of NF-κB and Akt pathways by an antibody-avidin fusion protein sensitizes malignant B cells to cisplatin-induced apoptosis. Int J Onc 2010; 36: 1299–1307.

    CAS  Google Scholar 

  24. Baud V, Karin M . Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    Article  CAS  PubMed  Google Scholar 

  26. White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS . Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. Cancer Res 1990; 50: 6295–6301.

    CAS  PubMed  Google Scholar 

  27. Helguera G, Penichet ML . Antibody-cytokine fusion proteins for the therapy of cancer. Methods Mol Med 2005; 109: 347–374.

    CAS  PubMed  Google Scholar 

  28. de Hoon MJ, Makita Y, Imoto S, Kobayashi K, Ogasawara N, Nakai K et al. Predicting gene regulation by sigma factors in Bacillus subtilis from genome-wide data. Bioinformatics 2004; 20 (Suppl 1): i101–i108.

    Article  CAS  PubMed  Google Scholar 

  29. Saldanha AJ . Java Treeview—extensible visualization of microarray data. Bioinformatics 2004; 20: 3246–3248.

    Article  CAS  PubMed  Google Scholar 

  30. Chou TC, Hayball MP . CalcuSyn: Windows Software for Dose Effect Analysis. Biosoft: Cambridge, Unitied Kingdom, 1996.

    Google Scholar 

  31. Carrasco RA, Stamm NB, Patel BK . One-step cellular caspase-3/7 assay. Biotechniques 2003; 34: 1064–1067.

    Article  CAS  PubMed  Google Scholar 

  32. Muckenthaler M, Richter A, Gunkel N, Riedel D, Polycarpou-Schwarz M, Hentze S et al. Relationships and distinctions in iron-regulatory networks responding to interrelated signals. Blood 2003; 101: 3690–3698.

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez M, Galy B, Dandekar T, Bengert P, Vainshtein Y, Stolte J et al. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J Biol Chem 2006; 281: 22865–22874.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez M, Galy B, Muckenthaler MU, Hentze MW . Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol 2007; 14: 420–426.

    Article  CAS  PubMed  Google Scholar 

  35. Brooks JT, Elvidge GP, Glenny L, Gleadle JM, Liu C, Ragoussis J et al. Variations within oxygen-regulated gene expression in humans. J Appl Physiol 2009; 106: 212–220.

    Article  CAS  PubMed  Google Scholar 

  36. Collins JF . Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol Res 2006; 39: 25–37.

    CAS  PubMed  Google Scholar 

  37. Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA 2009; 106: 12115–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C . The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 1999; 13: 1675–1690.

    Article  CAS  PubMed  Google Scholar 

  39. Morgan R . Hox genes: a continuation of embryonic patterning? Trends Genet 2006; 22: 67–69.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu J, Giannola DM, Zhang Y, Rivera AJ, Emerson SG . NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood 2003; 102: 2420–2427.

    Article  CAS  PubMed  Google Scholar 

  41. Harousseau JL, Shaughnessy Jr J, Richardson P . Multiple myeloma. Hematology Am Soc Hematol Educ Program 2004, 237–256.

    Article  Google Scholar 

  42. Fernaeus S, Land T . Increased iron-induced oxidative stress and toxicity in scrapie-infected neuroblastoma cells. Neurosci Lett 2005; 382: 217–220.

    Article  CAS  PubMed  Google Scholar 

  43. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9: 49–89.

    Article  CAS  PubMed  Google Scholar 

  44. Wentzel P, Eriksson UJ . Altered gene expression in neural crest cells exposed to ethanol in vitro. Brain Res 2009; 1305 (Suppl): S50–S60.

    Article  CAS  PubMed  Google Scholar 

  45. Andrews GK . Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 2000; 59: 95–104.

    Article  CAS  PubMed  Google Scholar 

  46. Siafakas AR, Richardson DR . Growth arrest and DNA damage-45 alpha (GADD45a). Int J Biochem Cell Biol 2009; 41: 986–989.

    Article  Google Scholar 

  47. Oexle H, Gnaiger E, Weiss G . Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta 1999; 1413: 99–107.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Q, Hilsenbeck S, Gazitt Y . Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 2003; 101: 4078–4087.

    Article  CAS  PubMed  Google Scholar 

  49. Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP et al. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 2001; 7: 1111–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M, Huebner K . Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci 2009; 100: 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  51. Bennati AM, Castelli M, Della Fazia MA, Beccari T, Caruso D, Servillo G et al. Sterol dependent regulation of human TM7SF2 gene expression: role of the encoded 3beta-hydroxysterol Delta14-reductase in human cholesterol biosynthesis. Biochim Biophys Acta 2006; 1761: 677–685.

    Article  CAS  PubMed  Google Scholar 

  52. Lansdorp PM, Dragowska W . Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 1992; 175: 1501–1509.

    Article  CAS  PubMed  Google Scholar 

  53. Gross S, Helm K, Gruntmeir JJ, Stillman WS, Pyatt DW, Irons RD . Characterization and phenotypic analysis of differentiating CD34+ human bone marrow cells in liquid culture. Eur J Haematol 1997; 59: 318–326.

    Article  CAS  PubMed  Google Scholar 

  54. Andrews RG, Singer JW, Bernstein ID . Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 1989; 169: 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  55. Bender JG, Unverzagt K, Walker DE, Lee W, Smith S, Williams S et al. Phenotypic analysis and characterization of CD34+ cells from normal human bone marrow, cord blood, peripheral blood, and mobilized peripheral blood from patients undergoing autologous stem cell transplantation. Clin Immunol Immunopathol 1994; 70: 10–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Lawrence Boise (Emory University, Atlanta, GA, USA) for providing the KMS-11 cell line and Drs Kenneth Anderson and Darminder Chauhan (Dana-Farber Cancer Institute, Boston, MA). for providing the MM.1S cell line. This work was supported in part by NIH/NCI Grants R01CA107023, K01CA138559, R01 supplement CA57152-13S1 and the training grant T32-CA009120. Our work was also supported by the Howard Hughes Medical Institute Gilliam Fellowship, the Whitcome Fellowship of the Molecular Biology Interdepartmental Ph.D. Program at UCLA, The Prostate Project (UK), and Cancer Research UK (C7822/A3832). The UCLA Jonsson Comprehensive Cancer Center and Center for AIDS Research Flow Cytometry Core Facility is supported by the NIH Awards CA-16042 and AI-28697, the Jonsson Cancer Center, the UCLA AIDS Institute, and the UCLA School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Penichet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, T., Neacato, I., Rodríguez, J. et al. Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells. Leukemia 24, 1555–1565 (2010). https://doi.org/10.1038/leu.2010.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.142

Keywords

This article is cited by

Search

Quick links