Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Genetic deletion and pharmacologic inhibition of E3 ubiquitin ligase HOIP impairs the propagation of myeloid leukemia

Abstract

We investigated the role of Hoip, a catalytic subunit of linear ubiquitin chain assembly complex (LUBAC), in adult hematopoiesis and myeloid leukemia by using both conditional deletion of Hoip and small-molecule chemical inhibitors of Hoip. Conditional deletion of Hoip led to significantly longer survival and marked depletion of leukemia burden in murine myeloid leukemia models. Nevertheless, a competitive transplantation assay showed the reduction of donor-derived cells in the bone marrow of recipient mice was relatively mild after conditional deletion of Hoip. Although both Hoip-deficient hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) impaired the maintenance of quiescence, conditional deletion of Hoipinduced apoptosis in LSCs but not HSCs in vivo. Structure-function analysis revealed that LUBAC ligase activity and the interaction of LUBAC subunits were critical for the propagation of leukemia. Hoip regulated oxidative phosphorylation pathway independently of nuclear factor kappa B pathway in leukemia, but not in normal hematopoietic cells. Finally, the administration of thiolutin, which inhibits the catalytic activity of Hoip, improved the survival of recipients in murine myeloid leukemia and suppressed propagation in the patient-derived xenograft model of myeloid leukemia. Collectively, these data indicate that inhibition of LUBAC activity may be a valid therapeutic target for myeloid leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of Hoip in adult hematopoiesis.
Fig. 2: Role of Hoip in murine myeloid leukemia.
Fig. 3: Role of HOIP in human myeloid leukemia.
Fig. 4: Hoip regulates the NF-κB pathway in myeloid leukemia.
Fig. 5: Hoip regulates apoptosis in myeloid leukemia.
Fig. 6: Hoip regulates oxidative phosphorylation in myeloid leukemia.
Fig. 7: Thiolutin, a Hoip inhibitor, suppresses the propagation of myeloid leukemia in vitro.
Fig. 8: Thiolutin, a Hoip inhibitor, suppresses the propagation of murine and human myeloid leukemia in vivo.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. RNA sequencing data have been deposited in the DDBJ database under the accession number DRA013876.

References

  1. Rape M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 2018;19:59–70.

    Article  CAS  Google Scholar 

  2. Spit M, Rieser E, Walczak H. Linear ubiquitination at a glance. J Cell Sci. 2019;132:jcs208512.

    Article  Google Scholar 

  3. Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006;25:4877–87.

    Article  CAS  Google Scholar 

  4. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471:591–6.

    Article  CAS  Google Scholar 

  5. Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature. 2011;471:633–6.

    Article  CAS  Google Scholar 

  6. Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature. 2011;471:637–41.

    Article  CAS  Google Scholar 

  7. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11:123–32.

    Article  CAS  Google Scholar 

  8. Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep. 2014;9:153–65.

    Article  CAS  Google Scholar 

  9. Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112–7.

    Article  CAS  Google Scholar 

  10. Sasaki Y, Sano S, Nakahara M, Murata S, Kometani K, Aiba Y, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 2013;32:2463–76.

    Article  CAS  Google Scholar 

  11. Sasaki K, Himeno A, Nakagawa T, Sasaki Y, Kiyonari H, Iwai K. Modulation of autoimmune pathogenesis by T cell-triggered inflammatory cell death. Nat Commun. 2019;10:3878.

    Article  Google Scholar 

  12. MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res. 2014;74:2246–57.

    Article  CAS  Google Scholar 

  13. Yang Y, Schmitz R, Mitala J, Whiting A, Xiao W, Ceribelli M, et al. Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms. Cancer Discov. 2014;4:480–93.

    Article  CAS  Google Scholar 

  14. Dubois SM, Alexia C, Wu Y, Leclair HM, Leveau C, Schol E, et al. A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells. Blood. 2014;123:2199–203.

    Article  CAS  Google Scholar 

  15. Ruiz EJ, Diefenbacher ME, Nelson JK, Sancho R, Pucci F, Chakraborty A, et al. LUBAC determines chemotherapy resistance in squamous cell lung cancer. J Exp Med. 2019;216:450–65.

    Article  CAS  Google Scholar 

  16. Jo T, Nishikori M, Kogure Y, Arima H, Sasaki K, Sasaki Y, et al. LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells. Blood. 2020;136:684–97.

    Article  CAS  Google Scholar 

  17. Yin R, Liu S. SHARPIN regulates the development of clear cell renal cell carcinoma by promoting von Hippel-Lindau protein ubiquitination and degradation. Cancer Sci. 2021;112:4100–11.

    Article  CAS  Google Scholar 

  18. Hua F, Hao W, Wang L, Li S. Linear ubiquitination mediates EGFR-induced NF-κB pathway and tumor development. Int J Mol Sci. 2021;22:11875.

    Article  CAS  Google Scholar 

  19. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  Google Scholar 

  20. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    Article  CAS  Google Scholar 

  21. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA. 2002;99:16220–5.

    Article  CAS  Google Scholar 

  22. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Investig. 2014;124:528–42.

    Article  CAS  Google Scholar 

  23. Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature. 2010;466:765–8.

    Article  CAS  Google Scholar 

  24. Bajaj J, Konuma T, Lytle NK, Kwon HY, Ablack JN, Cantor JM, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell. 2016;30:792–805.

    Article  CAS  Google Scholar 

  25. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500–4.

    Article  CAS  Google Scholar 

  26. Jimbo K, Nakajima-Takagi Y, Ito T, Koide S, Nannya Y, Iwama A, et al. Immunoglobulin superfamily member 8 maintains myeloid leukemia stem cells through inhibition of β-catenin degradation. Leukemia 2022;36:1550–62.

    Article  CAS  Google Scholar 

  27. Fuseya Y, Fujita H, Kim M, Ohtake F, Nishide A, Sasaki K, et al. The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. Nat Cell Biol. 2020;22:663–73.

    Article  CAS  Google Scholar 

  28. Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003;100:183–8.

    Article  CAS  Google Scholar 

  29. Kato H, Liao Z, Mitsios JV, Wang HY, Deryugina EI, Varner JA, et al. The primacy of β1 integrin activation in the metastatic cascade. PLoS One. 2012;7:e46576.

    Article  CAS  Google Scholar 

  30. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  Google Scholar 

  31. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC, et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008;112:4193–201.

    Article  CAS  Google Scholar 

  32. Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genom. 2009;2:18.

    Article  Google Scholar 

  33. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 1999;18:6910–24.

    Article  CAS  Google Scholar 

  34. Chen C, Edelstein LC, Gélinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol. 2000;20:2687–95.

    Article  Google Scholar 

  35. Yagi H, Ishimoto K, Hiromoto T, Fujita H, Mizushima T, Uekusa Y, et al. A non-canonical UBA-UBL interaction forms the linear-ubiquitin-chain assembly complex. EMBO Rep. 2012;13:462–8.

    Article  CAS  Google Scholar 

  36. Fujita H, Tokunaga A, Shimizu S, Whiting AL, Aguilar-Alonso F, Takagi K, et al. Cooperative domain formation by homologous motifs in HOIL-1L and SHARPIN plays a crucial role in LUBAC stabilization. Cell Rep. 2018;23:1192–204.

    Article  CAS  Google Scholar 

  37. Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 2012;31:3833–44.

    Article  CAS  Google Scholar 

  38. Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, Christodoulou E, et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature. 2013;503:422–6.

    Article  CAS  Google Scholar 

  39. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol. 2011;13:1272–9.

    Article  CAS  Google Scholar 

  40. Birkenmeier K, Dröse S, Wittig I, Winkelmann R, Käfer V, Döring C, et al. Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation. Int J Cancer. 2016;138:2231–46.

    Article  CAS  Google Scholar 

  41. Sakamoto H, Egashira S, Saito N, Kirisako T, Miller S, Sasaki Y, et al. Gliotoxin suppresses NF-κB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC). ACS Chem Biol. 2015;10:675–81.

    Article  CAS  Google Scholar 

  42. Ye M, Iwasaki H, Laiosa CV, Stadtfeld M, Xie H, Heck S, et al. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity. 2003;19:689–99.

    Article  CAS  Google Scholar 

  43. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    Article  CAS  Google Scholar 

  44. Neering SJ, Bushnell T, Sozer S, Ashton J, Rossi RM, Wang PY, et al. Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood. 2007;110:2578–85.

    Article  CAS  Google Scholar 

  45. Ehrlund A, Jonsson P, Vedin LL, Williams C, Gustafsson JÅ, Treuter E. Knockdown of SF-1 and RNF31 affects components of steroidogenesis, TGFβ, and Wnt/β-catenin signaling in adrenocortical carcinoma cells. PLoS One. 2012;7:e32080.

    Article  CAS  Google Scholar 

  46. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12:329–41.

    Article  CAS  Google Scholar 

  47. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23:1234–40.

    Article  CAS  Google Scholar 

  48. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–35.

    Article  CAS  Google Scholar 

  49. Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020;67:131–44.

    Article  CAS  Google Scholar 

  50. Tomonaga M, Hashimoto N, Tokunaga F, Onishi M, Myoui A, Yoshikawa H, et al. Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells. Int J Oncol. 2012;40:409–17.

    CAS  Google Scholar 

  51. Oikawa D, Sato Y, Ohtake F, Komakura K, Hanada K, Sugawara K, et al. Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Commun Biol. 2020;3:163.

    Article  CAS  Google Scholar 

  52. Dolan SK, O’Keeffe G, Jones GW, Doyle S. Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol. 2015;23:419–28.

    Article  CAS  Google Scholar 

  53. Lauinger L, Li J, Shostak A, Cemel IA, Ha N, Zhang Y, et al. Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nat Chem Biol. 2017;13:709–14.

    Article  CAS  Google Scholar 

  54. Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer. 2022;127:788–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the lab members in Division of Molecular Therapy, Division of Hematopoietic Disease Control, and FACS Core Laboratory (The Institute of Medical Science, The University of Tokyo) for helpful support and comments. We would like to thank Toshio Kitamura (The Institute of Medical Science, The University of Tokyo) for kindly providing the pMYs-IRES-GFP vector, and Hisashi Kato (Osaka University) for kindly providing the FG12-UbiC-tdTomato vector. Hoipflox/flox mice (strain: B6.B6CB-Rnf31<tm1.1Kiwa>; RBRC09483) were provided by the RIKEN BRC through the National BioResource Project of the MEXT/AMED, Japan. This work was supported by the SGH foundation, the Japanese Society of Hematology Research Grant, the Princess Takamatsu Cancer Research Fund, and the Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University. This work was also supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (20K08748 to TK; 20J10521 to KJ; 19H05746 to AI).

Author information

Authors and Affiliations

Authors

Contributions

KJ performed the experiments, analyzed the data and contributed to the writing the manuscript. AH performed the establishment of PDX of AML model. SK performed the RNA sequencing analysis. AH, TI, and YN edited the manuscript. TK planned and guided the research, and wrote the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Takaaki Konuma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimbo, K., Hattori, A., Koide, S. et al. Genetic deletion and pharmacologic inhibition of E3 ubiquitin ligase HOIP impairs the propagation of myeloid leukemia. Leukemia 37, 122–133 (2023). https://doi.org/10.1038/s41375-022-01750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01750-7

This article is cited by

Search

Quick links