Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

The downregulation of onzin expression by PKCɛ-ERK2 signaling and its potential role in AML cell differentiation

Abstract

Onzin is a small, novel, and highly conserved protein with unique structure and tissue-restricted expression. The regulation of its expression and biological roles remain greatly elusive. Here, we provide the first demonstration that onzin expression is significantly downregulated during differentiation induction of acute myeloid leukemic (AML) cell lines and primary cells by all-trans retinoic acid (ATRA) and especially by phorbol 12-myristate 13-acetate (PMA). Applying chemical inhibitions, RNA interferences, and transfected expressions of dominant negative mutants or constitutive catalytic forms of the related kinases, we show that protein kinase C-ɛ (PKCɛ)-extracellular signal-regulated protein kinase 2 (ERK2) signaling axis is required for PMA-induced downregulation of onzin expression. The ectopic expression of onzin partially inhibits PMA-induced monocytic differentiation of AML cells, whereas suppression of onzin by specific short hairpin RNAs enhances PMA-induced differentiation to a degree. Furthermore, onzin partially inhibits the transcriptional activity of hematopoiesis-related important transcription factor PU.1 via their interaction. Taken together, our results show that PMA downregulates onzin expression through PKCɛ-ERK2 signaling pathway, which favors monocytic differentiation of leukemic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Heidenreich O, Krauter J, Riehle H, Hadwiger P, John M, Heil G et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 2003; 101: 3157–3163.

    Article  CAS  Google Scholar 

  2. Zhao KW, Li X, Zhao Q, Huang Y, Li D, Peng ZG et al. Protein kinase Cdelta mediates retinoic acid and phorbol myristate acetate-induced phospholipid scramblase 1 gene expression: its role in leukemic cell differentiation. Blood 2004; 104: 3731–3738.

    Article  CAS  Google Scholar 

  3. Zhang K, Guo QL, You QD, Yang Y, Zhang HW, Yang L et al. Wogonin induces the granulocytic differentiation of human NB4 promyelocytic leukemia cells and up-regulates phospholipid scramblase 1 gene expression. Cancer Sci 2008; 99: 689–695.

    Article  CAS  Google Scholar 

  4. Galaviz-Hernandez C, Stagg C, de Ridder G, Tanaka TS, Ko MS, Schlessinger D et al. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene 2003; 309: 81–89.

    Article  CAS  Google Scholar 

  5. Rissoan MC, Duhen T, Bridon JM, Bendriss-Vermare N, Peronne C, de Saint Vis B et al. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood 2002; 100: 3295–3303.

    Article  CAS  Google Scholar 

  6. Li Y, Rogulski K, Zhou Q, Sims PJ, Prochownik EV . The negative c-Myc target onzin affects proliferation and apoptosis via its obligate interaction with phospholipid scramblase 1. Mol Cell Biol 2006; 26: 3401–3413.

    Article  CAS  Google Scholar 

  7. Rogulski K, Li Y, Rothermund K, Pu L, Watkins S, Yi F et al. Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt-Mdm2-p53 pathway. Oncogene 2005; 24: 7524–7541.

    Article  CAS  Google Scholar 

  8. Ashendel CL . The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta 1985; 822: 219–242.

    Article  CAS  Google Scholar 

  9. Nishizuka Y . Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  CAS  Google Scholar 

  10. Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y . Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 1992; 17: 414–417.

    Article  CAS  Google Scholar 

  11. Zhao KW, Li D, Zhao Q, Huang Y, Silverman RH, Sims PJ et al. Interferon-alpha-induced expression of phospholipid scramblase 1 through STAT1 requires the sequential activation of protein kinase Cdelta and JNK. J Biol Chem 2005; 280: 42707–42714.

    Article  CAS  Google Scholar 

  12. Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpern AE, Phung HM et al. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 1992; 117: 121–133.

    Article  CAS  Google Scholar 

  13. Cowan KJ, Storey KB . Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 2003; 206: 1107–1115.

    Article  CAS  Google Scholar 

  14. Nusrat AR, Chapman Jr HA . An autocrine role for urokinase in phorbol ester-mediated differentiation of myeloid cell lines. J Clin Invest 1991; 87: 1091–1097.

    Article  CAS  Google Scholar 

  15. Zhang DE, Hohaus S, Voso MT, Chen HM, Smith LT, Hetherington CJ et al. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 1996; 211: 137–147.

    CAS  Google Scholar 

  16. Zhang DE, Hetherington CJ, Chen HM, Tenen DG . The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14: 373–381.

    Article  CAS  Google Scholar 

  17. Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996; 16: 1231–1240.

    Article  CAS  Google Scholar 

  18. Ledford JG, Kovarova M, Koller BH . Impaired host defense in mice lacking ONZIN. J Immunol 2007; 178: 5132–5143.

    Article  CAS  Google Scholar 

  19. Meng XW, Heldebrant MP, Kaufmann SH . Phorbol 12-myristate 13-acetate inhibits death receptor-mediated apoptosis in Jurkat cells by disrupting recruitment of Fas-associated polypeptide with death domain. J Biol Chem 2002; 277: 3776–3783.

    Article  CAS  Google Scholar 

  20. Geiger M, Wrulich OA, Jenny M, Schwaiger W, Grunicke HH, Uberall F . Defining the human targets of phorbol ester and diacylglycerol. Curr Opin Mol Ther 2003; 5: 631–641.

    CAS  Google Scholar 

  21. Silinsky EM, Searl TJ . Phorbol esters and neurotransmitter release: more than just protein kinase C? Br J Pharmacol 2003; 138: 1191–1201.

    Article  CAS  Google Scholar 

  22. Besson A, Davy A, Robbins SM, Yong VW . Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene 2001; 20: 7398–7407.

    Article  CAS  Google Scholar 

  23. Chen J, Deng F, Singh SV, Wang QJ . Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCepsilon/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res 2008; 68: 3844–3853.

    Article  CAS  Google Scholar 

  24. Wang X, Wang Q, Hu W, Evers BM . Regulation of phorbol ester-mediated TRAF1 induction in human colon cancer cells through a PKC/RAF/ERK/NF-kappaB-dependent pathway. Oncogene 2004; 23: 1885–1895.

    Article  CAS  Google Scholar 

  25. LeHoux JG, Lefebvre A . Novel protein kinase C-epsilon inhibits human CYP11B2 gene expression through ERK1/2 signalling pathway and JunB. J Mol Endocrinol 2006; 36: 51–64.

    Article  CAS  Google Scholar 

  26. Petiti JP, De Paul AL, Gutierrez S, Palmeri CM, Mukdsi JH, Torres AI . Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol 2008; 289: 77–84.

    Article  CAS  Google Scholar 

  27. Hsu CL, Kikuchi K, Kondo M . Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment. Blood 2007; 110: 1420–1428.

    Article  CAS  Google Scholar 

  28. Martin-Thouvenin V, Gendron MC, Hogervorst F, Figdor CG, Lanotte M . Phorbol ester-induced promyelocytic leukemia cell adhesion to marrow stromal cells involves fibronectin specific alpha 5 beta 1 integrin receptors. J Cell Physiol 1992; 153: 95–102.

    Article  CAS  Google Scholar 

  29. Baatout S . Phorbol esters: useful tools to study megakaryocyte differentiation. Hematol Cell Ther 1998; 40: 33–39.

    CAS  Google Scholar 

  30. Redig AJ, Platanias LC . The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 2007; 27: 623–636.

    Article  CAS  Google Scholar 

  31. Redig AJ, Platanias LC . Protein kinase C signalling in leukemia. Leuk Lymphoma 2008; 49: 1255–1262.

    Article  CAS  Google Scholar 

  32. Bassini A, Zauli G, Migliaccio G, Migliaccio AR, Pascuccio M, Pierpaoli S et al. Lineage-restricted expression of protein kinase C isoforms in hematopoiesis. Blood 1999; 93: 1178–1188.

    CAS  Google Scholar 

  33. Macfarlane DE, Manzel L . Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 1994; 269: 4327–4331.

    CAS  Google Scholar 

  34. Tonetti DA, Henning-Chubb C, Yamanishi DT, Huberman E . Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem 1994; 269: 23230–23235.

    CAS  Google Scholar 

  35. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF . Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 1993; 268: 20110–20115.

    CAS  Google Scholar 

  36. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK et al. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 2003; 278: 32544–32551.

    Article  CAS  Google Scholar 

  37. Huang Y, Zhao Q, Zhou CX, Gu ZM, Li D, Xu HZ et al. Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. Oncogene 2006; 25: 6618–6627.

    Article  CAS  Google Scholar 

  38. Racke FK, Wang D, Zaidi Z, Kelley J, Visvader J, Soh JW et al. A potential role for protein kinase C-epsilon in regulating megakaryocytic lineage commitment. J Biol Chem 2001; 276: 522–528.

    Article  CAS  Google Scholar 

  39. Yen A, Roberson MS, Varvayanis S, Lee AT . Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 1998; 58: 3163–3172.

    CAS  Google Scholar 

  40. Miranda MB, Johnson DE . Signal transduction pathways that contribute to myeloid differentiation. Leukemia 2007; 21: 1363–1377.

    Article  CAS  Google Scholar 

  41. Miranda MB, McGuire TF, Johnson DE . Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002; 16: 683–692.

    Article  CAS  Google Scholar 

  42. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996; 15: 5647–5658.

    Article  CAS  Google Scholar 

  43. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573–1577.

    Article  CAS  Google Scholar 

  44. Friedman AD . Transcriptional control of granulocyte and monocyte development. Oncogene 2007; 26: 6816–6828.

    Article  CAS  Google Scholar 

  45. Ueki N, Zhang L, Hayman MJ . Ski can negatively regulates macrophage differentiation through its interaction with PU.1. Oncogene 2008; 27: 300–307.

    Article  CAS  Google Scholar 

  46. Rosa A, Ballarino M, Sorrentino A, Sthandier O, De Angelis FG, Marchioni M et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 2007; 104: 19849–19854.

    Article  CAS  Google Scholar 

  47. Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood 1992; 79: 2378–2383.

    CAS  Google Scholar 

  48. Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J 2004; 23: 1144–1154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jae-Won Soh for generously providing plasmids pHACB-PKCβII-DN, pHACE-PKCɛ-DN, pHACB-PKCβII-CAT, and pHACE-PKCɛ-CAT. This work is supported in part by grants from the Ministry of Science and Technology (2009CB918500), National Natural Science Foundation of China (90813034), Chinese Academy of Sciences (KSCX2-YW-R-097), and Science and Technology Commission of Shanghai (08JC1413700). SF WU is a PhD candidate at Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, and this work is submitted in partial fulfillment of the requirement for the PhD. Dr GQ Chen is supported by Shanghai Ling-Jun Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G-Q Chen.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SF., Huang, Y., Hou, JK. et al. The downregulation of onzin expression by PKCɛ-ERK2 signaling and its potential role in AML cell differentiation. Leukemia 24, 544–551 (2010). https://doi.org/10.1038/leu.2009.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.280

Keywords

This article is cited by

Search

Quick links